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ABSTRACT

Mobile Ad-hoc Networks (MANETS) allow wireless nodes to form a network without
requiring a fixed infrastructure. Early routing protocols for MANETS failed to take security
issues into account. Subsequent proposals used strong cryptographic methods to secure the
routing information. In the process, however, these protocols created new avenues for denial
of service (DoS). Consequently, the trade-off between security strength and DoS vulnerability
has emerged as an area requiring further investigation. It is believed that different trust
methods can be used to develop protocols at various levels in this trade-off. To gain a
handle on this exchange, real world testing that evaluates the cost of existing proposals is
necessary. Without this, future protocol design is mere speculation. In this paper, we give
the first comparison of SAODV and TAODV, two MANET routing protocols, which address
routing security through cryptographic and trust-based means respectively. We provide
performance comparisons on actual resource-limited hardware. Finally, we discuss design
decisions for future routing protocols.



1 Introduction

In traditional wireless networks, a base station or access point facilitates communications
between nodes on the network and communications with destinations outside the network.
In contrast, MANETSs allow for the formation of a network without requiring a fixed infras-
tructure. These networks only require that nodes have interoperable radio hardware and are
using the same routing protocol to route traffic over the network. The lessened requirements
for such networks, along with the ability to implement them using small, resource-limited
devices has made them increasingly popular in all types of application areas. For exam-
ple, MANET-based sensor networks have been proposed to assist in collecting data on the
battlefield.

Since there is no fixed infrastructure, the nodes in the network forward traffic for one
another in order to allow communication between nodes that are not within physical radio
range. Nodes must also be able to change how they forward data over the network as
individual nodes move around and acquire or lose neighbors, i.e., nodes within radio range.
Routing protocols are used to determine how to forward the data as well as how to adapt to
topology changes resulting from mobility.

Initial MANET routing protocols, such as AODV [27], were not designed to withstand
malicious nodes within the network or outside attackers with malicious intent. Subsequent
protocols and protocol extensions have been proposed to address the issue of security [1, 2,
11, 20, 29, 34, 35, 36]. Many of these protocols seek to apply cryptographic methods to the
existing protocols in order to secure the information in the routing packets. It was quickly
discovered, however, that while such an approach does indeed prevent tampering with the
routing information, it also allows for a very simple denial of service (DoS) attack [15]. This
is due to the fact that these protocols require a node to perform expensive cryptographic
operations, such as verifying a digital signature, prior to performing any processing on the
packet. Therefore, in order to mount a DoS attack, an attacker sends packets with incorrect
cryptographic information. All nodes obeying the protocol will expend their processing
capabilities attempting to perform the expensive cryptographic operations. This attack is
very effective in MANETS as the devices often have limited battery power in addition to the
limited computational power. Consequently, this type of DoS attack allows for an attacker
to effectively shutdown nodes or otherwise disrupt the network.

The trade-off between strong cryptographic security and DoS has become increasingly
important as MANET applications are developed which require a protocol with reasonable
security and reasonable resistance to DoS, a kind of middle ground. It has been suggested
that various trust mechanisms could be used to develop new protocols with unique security
assurances at different levels in this trade-off [6, 37]. However, the arguments for this have
been purely theoretical or simulation-based. Determining the actual span of this trade-off in
real world implementations is of utmost importance in directing future research and protocol
design.

It is in this context that this paper considers two proposed protocol extensions to secure
MANET routing. The first, SAODV [35], uses crytographic methods to secure the routing
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information in the AODV protocol. The second, TAODV [21], uses trust metrics to allow
for better routing decisions and penalize uncooperative nodes. While some applications may
be able to accept SAODV’s vulnerability to DoS or TAODV’s weak preventative security,
most will require an intermediate protocol tailored to the specific point on the DoS/security
trade-off that fits the application. The tailored protocols for these applications will also
require performance that falls between that of SAODV and TAODV. Understanding how
the SAODV and TAODV protocols (which are on the boundaries of the DoS/security trade-
off) perform on real hardware, and to what extent there exists a performance gap is a
prerequisite for being able to develop the intermediate protocols. Such evaluation is not
only required for developing intermediate protocols, but also for determining the direction
for development of new trust metrics for ad-hoc networks.

In this paper we first detail our implementation of these protocols. We then provide the
first performance evaluations for these protocols on real world hardware. Based on these
results, we then discuss where future efforts should be focused for creating viable routing
protocols for real world MANETS.

The remainder of the paper is structured as follows: Section 2 discusses the related
work. Overviews of the AODV, SAODV, and TAODV protocols are provided in Section 3.
Our experimental setup including hardware, software, and implementation is described in
Section 4. Section 5 contains the results of our tests along with a discussion of the results.
Conclusions and future work are presented in Section 6.

2 Related Work

Several different protocols have been proposed for ad-hoc routing. The earliest protocols
such as DSDV [26], DSR [16], and AODV [27] focused on problems that mobility presented
to the accurate determination of routing information. DSDV is a proactive protocol requiring
periodic updates of all the routing information. In contrast, DSR and AODV are reactive
protocols, only used when new destinations are sought, a route breaks, or a route is no longer
in use.

As more applications were developed to take advantage of the unique properties of ad-
hoc networks, it soon became obvious that security of routing information was an issue not
addressed in the existing protocols. In [19], Lundberg presents several potential problems
including node compromise, computational overload attacks, energy consumption attacks,
and black hole attacks. Deng et al. further discuss energy consumption and black hole at-
tacks along with impersonation and routing information disclosure in [10]. Jakobsson et al.
categorize attacks as manipulation of routing information and exhaustive power consump-
tion, and provide detailed treatments of many characteristic attacks in [15].

Many new routing protocols and extensions to existing protocols have been proposed
to address these issues. Due to the extra information available in DSR, by way of source
routing, numerous new security protocols are based on it. In [20], Marti et al. extend DSR by
adding “watchdog” and “pathrater” mechanisms. One disadvantage of this protocol is that
it merely avoids routing through malicious nodes, and it does not do anything to penalize
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them. This allows a lazy node to not forward traffic for its neighbors while its neighbors will
continue to forward its traffic. The protocol proposed by Awerbuch et al. in [1] suffers the
same weakness. In [2], Buchegger and Boudee extend DSR in a similar fashion, but address
this issue.

Papadimitratos and Haas propose a protocol based on DSR that provides endpoint secu-
rity by way of pairwise pre-shared symmetric keys in [25]. This, however, does not address
security of the routing information over intermediate nodes. In [13], Hu et al. propose
Ariadne, a protocol allowing varying levels of computational intensiveness by using either
TESLA [28] (based on one-way hash chains), pairwise symmetric keys, or digital signatures.

Several other protocols have been developed which look to minimize computational cost.
In [34], Yiet al. introduce a protocol which uses symmetric keys, but instead of using pairwise
keys, they use one key per “trust level,” a determination that is made when the system is
initialized and cannot be changed. Perrig et al. propose SPINS, which uses yTESLA, a
lightweight version of TESLA, in [29]. Their protocol, however, assumes the existence of a
base station for key setup. In [11], Hu et al. propose SEAD which also uses one-way hash
chains. SEAD, however, is a proactive protocol based on DSDV and therefore uses more
bandwidth for routing updates than the reactive protocols.

While much research has focused on “lightweight” security mechanisms, some proposed
protocols use more expensive asymmetric cryptography. In [36], Zhou and Haas present
a multi-path protocol extension that uses threshold cryptography to implement the key
management system. It requires some nodes to function as servers and an authority to
initialize these servers. Capkun et al. have proposed two protocols involving asymmetric
cryptography. In [3], they propose a certificate-based protocol which requires each user to
generate their own certificate repository before participating in the network. The protocol
they introduce in [4] uses cryptographic methods to derive a node’s identity (address) from
its certificate. This protocol, however, requires either secure point-to-point side channels
or a central authority. Finally, Zapata and Asokan propose SAODV [35], a secure version
of AODV, which uses digital signatures and hash chains to secure the routing messages.
SAODV is discussed in more detail in Section 3.2.

Applying trust mechanisms to ad-hoc wireless networks has not been given as much
attention as the application of cryptographic methods. In addition, trust can be applied
to several different areas from informing routing decisions for reliability, to access control,
to information flow security. One common thread, however, is that the unreliability of
the wireless medium lends itself to Jgsang’s subjective logic [17] which takes into account
uncertainty. Another common thread is that small world concepts can be applied due to the
limited localized connectivity of these networks [9].

Eschenauer et al. provide a thorough summary of the requirements for using trust in ad-
hoc networks in [6]. One notable observation is the need to secure the trust information being
exchanged from compromise. Zouridaki et al. also provide an evaluation of the requirements
for trust in ad-hoc networks in [37]. The authors also detail the problems unique to distance
vector algorithms that are absent in source routed algorithms.

In [14], Hughes et al. propose Dynamic Trust-based Resources (DyTR), which uses trust
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evaluation as a method of access control to network resources. The authors, however, do not
discuss the securing of the trust information exchange. Virendra and Upadhyaya also use
trust for access control in [33]. Their protocol aims to provide information security for the
data traversing the network. Once again, the trust information is unsecured. Nekkanti et al.
introduce a routing protocol in [22] aimed at securing information flow. Using security levels
on each node and varying the encryption strength accordingly they limit information to flow
only over nodes with sufficient clearance. Their proposal does not allow for the security
levels to change over the run of the protocol.

Pirzada and McDonald develop a protocol based on DSR in [30]. Their protocol takes
advantage of the full route information available in DSR. Unlike other recommendations,
however, they only consider trust from direct observations rather than including third party
opinions. In [5], Dewan and Dasgupta introduce a protocol to guide routing decisions. In
their protocol, however, lazy nodes are not penalized and therefore have no incentive to
participate.

In [31], Pissinou et al. propose a trust-based version of AODV using static trust lev-
els. The same authors then extend this protocol in [8] to thwart multiple colluding nodes.
Neither of these address securing the trust exchanges, or the overhead involved. Li et al.
introduce a trust-based variant of AODV in [18] that secures the trust information. However,
their protocol requires an intrusion detection system in the network. Finally, Meka et al.
propose a third trusted AODV with a simple method of evaluating trust even without source
routing [21]. We describe their protocol in more detail in Section 3.3.

Our work in this paper considers the asymmetric cryptography and trust-based extensions
to AODV presented in [35] and [21] respectively and shows a real world comparison of the
performance of the two protocols. Our results suggest that new protocols can be developed
which take advantage of the best features of both types of protocols, and which share aspects
of each security model.

3 Protocol Overviews

In this section we give general overviews of the three protocols we use in our experimental
comparisons.

3.1 AODV

AODV is a reactive routing protocol for ad-hoc networks. As such, it only maintains routes
between nodes when it is necessary for them to communicate. Unlike other reactive protocols,
particularly source routed protocols like DSR, the nodes in an AODV network are only aware
of the next hop along a route rather than the entire route itself. This makes AODV harder to
secure since the source does not have knowledge of all the nodes participating in the route.

To establish a route to a particular destination D, the source node S broadcasts a Route
Request packet (RREQ) to its neighbors. S specifies a destination sequence number in the
RREQ which indicates how “fresh” a route it requires. The RREQ is rebroadcast until it either
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reaches a node with a sequence number for D that is greater than or equal to the one in
the RREQ, or it reaches D. Intermediate nodes must respond to RREQs if they have a “fresh”
enough route as this speeds up route discovery.

As the RREQ is forwarded, each node makes a record of the RREQ to avoid resending the
packet the next time it encounters it, as well as to prepare a reverse route. When the Route
Reply (RREP) is generated at some intermediate node, or D, it is sent back to S unicast
via this reverse route. This sets up the route bi-directionally between S and D. A RREP
acknowledgement (RREP-ACK) can then be sent from S to D.

In addition to the RREQ, RREP, and RREP-ACK messages, HELLO messages are used for link-
state monitoring. Each node periodically broadcasts a HELLO message to inform its neighbors
that it is within range of direct radio broadcasts. After missing a certain number of HELLO
messages from a neighbor, a node sends Route Error (RERR) messages to all its neighbors
who had established routes forwarding data through the missing node.

3.2 SAODV

AODV was designed without any inherent security mechanisms. Zapata and Asokan try to
remedy this by introducing SAODV [35]. The new protocol attempts to prevent imperson-
ation attacks, worm hole and black hole attacks, and denial of service attacks made possible
by the use of sequence numbers. SAODV assumes that there is some key management sys-
tem available that provides public keys for each node in the network, and that individual
nodes can securely verify the link between identity and public key for other nodes.

SAODV uses two methods to secure the routing messages. The first method, one-way
hash chains, is used to secure the mutable parts of the routing messages. The only mutable
fields are the hop count in both the RREQ and RREP messages. Using a one-way hash chain
prevents a node from decrementing the hop count field and is meant to protect against worm
hole attacks. To implement this, three new fields are added to the RREQ and RREP messages,
namely, Max_Hop_Count, Hash, and Top_Hash. When the message is created, S chooses a
random seed and sets Hash = seed. It then sets Max_Hop_Count to the time to live value
from the IP header. Finally, it sets Top_Hash = hMaz-Hor-Count(seed) where h is a hash
function and h¥(z) is the iterative hashing of x, ¢ times. Upon receiving a RREQ or RREP, the
receiving node has to confirm that

TOp_HCLSh ; hMax_Hop_Count—Hop_C’ount (H&Sh)

It must then increment the Hop_Count field and set Hash = h(Hash).

The second method to protect data in SAODV messages is digital signatures. This
is used to prevent impersonation attacks. Digital signatures are used to protect the non-
mutable fields of the conventional AODV routing packet along with the non-mutable fields
of the SAODV extension. This means that everything is signed except for the Hop_Count
and Hash fields. The digital signature along with the public key necessary to verify it are
included in the RREQ/RREP packet. When a node receives one of these messages it is required
to verify the signature using the public key provided before it does any further processing.
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If the signature fails to verify, the packet is discarded. If the signature is verifiable then the
node proceeds as per AODV.

As per the SAODYV specification, the longest key length that can be used for the digital
signatures is only 512 bits. The are two main issues with using stronger key lengths. The
first is obviously the computational overhead required for the operations with a larger key
length. The other issue is more important in ad-hoc networks than in other settings where
the communication medium is more reliable. The problem is the increased message size.
For example, with SAODV’s most basic signature method, the Single Signature Extension
(SSE), and a 512 bit RSA key, a 24 byte RREQ message is extended to 198 bytes and the
20 byte RREP and HELLO messages become 194 bytes in length.

Aside from the transmission and computational overhead of digital signatures, there is
one other problem with signing the AODV messages. When a signed RREQ reaches the
destination, the destination sends back a signed RREP. This signature ensures that the route
is authentic in that the RREP is truly from the destination. However, in conventional AODV,
intermediate nodes are supposed to send RREP messages if they have a fresh enough route. In
SAODV, the intermediate nodes cannot sign the RREP as though it came from the destination.
Therefore, SAODV has two digital signature methods.

In the first, a Single Signature Extension (SSE) is used and only the destination can
respond to RREQ messages. In the second, when the destination responds to a RREQ, it
includes two different signature it has generated. The first is the signature that would be
included in a SSE RREP. The second is an extra signature which the intermediate node can
use to respond to RREQs it receives thereafter. This is called the Double Signature Extension
(DSE). It should be noted that while the RREP with DSE contains a lifetime set by the
destination, the latest draft standard is unclear about exactly how this prevents a malicious
node from reusing a validly obtained DSE for malicious purposes.

Since HELLO messages are RREP messages with a time to live of 1, they are secured in the
same way as regular RREP messages generated in response to RREQs. RERR messages, however,
are handled differently. Even though there is a large amount of mutable information in the
RERR packets, the SAODV protocol requires that the entire packet be signed so that the
receiver can verify the sender is who it claims to be. To rebroadcast a RERR message,
a node must repackage it with its own signature adding or updating any information in
the process. In addition, to prevent denial of service attacks caused by artificially inflated
sequence numbers, nodes do not update their stored newest sequence number for a particular
destination based on the sequence number in a RERR message.

SAODV aims to prevent several different types of attacks. Using digital signatures on
each routing packet establishes the identity of the source of that packet and the information
contained therein. This prevents a node from impersonating another node to disseminate
false information. The digital signature also serves to verify that the receiving node does in
fact get the values the source node transmitted (for the non-mutable fields) and that no node
in between changed these values. The use of one-way hash chains to verify hop count values
prevents a single malicious node from advertising false information under its own name. If
a node could report any hop count value, it could choose either a low or high value to get
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either selected or avoided, respectively, for inclusion along the route. This is prevented if
there is a single attacker. However, if there are multiple colluding attackers in different areas
of the network, they can bypass this mechanism using techniques similar to those involved
in the wormhole attack presented in [12].

3.3 TAODV

Many routing protocols use the number of hops from source to destination as the metric
for determining the best route. Meka et al. proposed a variant of AODV which instead
uses a computed trust value as the metric for routing decisions [21]. Nodes in a TAODV
network maintain trust values for their neighbors and the routes they have discovered. We
first discuss the modifications to AODV that are necessary. We then describe how these
modifications are used to compute trust values.

3.3.1 Modifications:

In order to track trust values for their neighbors, TAODV nodes require a new data structure
called the Neighbors’ Trust Table (NTT). Each entry in the NTT stores the neighbor’s node
ID, the trust value for that neighbor and the current number, r, of RREQs this node can send.
In addition to adding the NTT, there are modifications necessary to the routing table. The
routing table entry for a particular destination is modified to hold all the routes from that
node to the destination having the highest destination sequence number. Each individual
route is assigned a unique route ID, R;;, which is stored along with the Advertised Trust
Value (ATV) and the computed Route Selection Value (RSV).

Tracking route trust values is accomplished through extensions to the RREQ, RREP, and
RREP-ACK packets along with a new packet for congestion control called the CHOKE packet.
The RREQ packet is extended with the Omit Node Flag and Omit Node ID fields. This
allows the source to specify nodes that are to be precluded from being in the route to the
destination. All nodes must ensure that they are not forwarding a RREP from a neighbor if
that neighbor is identified in the Omit Node ID field.

The modified RREP packet includes fields for Route Trust and Recommender ID. As a
RREP returns to the source node, each intermediate node caches the value in Route Trust.
If the node has not computed a trust value for the this route, it simply forwards the RREP
to the next upstream node. However, if the node has already computed a trust value for the
route to this destination, it places its value in Route Trust and its identity in Recommender
ID before forwarding the packet.

The RREP-ACK message is not only modified, but also repurposed. Due to this, it is re-
named as R_ACK. The R_ACK message is a basic RREP-ACK with additional fields for Packets
Received and Timestamp. This packet is a reporting packet periodically sent by the desti-
nation to inform all nodes along the route, including the source, of the number of packets
received since the last R_ACK. The information in the RREP and R_ACK messages is used to
compute trust values as described below.
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The CHOKE packet consists of only three fields: Node ID, Timestamp, and Lifetime. It
is broadcast by a node to report to its neighbors that it is currently receiving, sending, or
forwarding large amounts of traffic and is therefore congested. By allowing a node to inform
its neighbors of congestion, the protocol prevents a node from being penalized for dropping
traffic. If the node is still congested after the first CHOKE packet’s Lifetime expires, it can
send another CHOKE packet. To prevent lazy nodes from abusing this system, a threshold
time tcongmae 15 set. If a node reports congestion for a period of time longer than ¢.ongmaz;
then its neighbors begin monitoring its traffic. If the node is actually congested, the neighbor
tries to find other routes to replace those using the congested neighbor. If the node is not
congested, it is penalized for selfish behaviour as described below.

3.3.2 Computation of Trust Values:

Nodes implementing TAODV measure an Observed Trust Value (OTV) for each route in
use. This is a straight forward computation of the number of packets received (as reported
in the R_ACK message) divided by the total number of packets forwarded or sent by the node
performing the calculation. The OTV is then compared to the ATV for the route. This is
used in an incentive/penalty system to determine how a node updates its trust value for the
downstream neighbor. This system uses four system-wide parameters ¢, p;, pp, and p. which
are discussed later. If the OTV is within a threshold ry,,esn, i.€.,

|OTV — ATV| S Tthresh

then the neighbor is given incentive I = r % (%), where r is the current number of RREQs
the node can send as stored in the NTT and H is the distance of the node being evaluated
from the destination in hops. If the neighbor fails to live up to its ATV, namely if OTV is
below the threshold, the neighbor is given penalty Py = —r % (”—Ij) Likewise, if the neighbor
outperforms its ATV, it must be penalized or else nodes would advertise low ATVs to avoid
being selected to forward data. This penalty is P, = —r % (%) Finally, nodes caught
broadcasting false CHOKE packets are given penalty P. = —r x (%)

After a penalty or incentive is assessed, it must be added to the nodes r in the NTT,
thus rewarding or penalizing the node by cooperating more or less frequently on RREQs. For
example, if a node n underperforms, then its upstream neighbor updates n’s entry in its
NTT such that » = r 4+ FPp. It is important to note that in all of these incentives/penalties,
the node’s distance from the destination is inversely proportional to the effect of the incen-
tive/penalty. This helps prevent downstream nodes from souring the reputation of upstream
nodes. While exact values for i, py, pn, and p. are not given, the following recommendation
is made [21]:

0<p.<prn<p<i<1

Once NTT trust values are up-to-date, a node must recalculate the RSV stored in the routing
table. The following method allows an administrator to adjust the weights to their particular

situation: T RT "
RSV — ind ind avg
) v () o (i




where
Ting - Trust in the individual neighbor.
Tavg : Average trust for all neighbors with routes to this destination.
RT;,q : Trust in the individual route.
RT,,, : Average trust for all routes to this destination.
H;,a : Hopcount for the individual route.
Hayg @ Avg. hopcount for all routes to this destination.

Once again, specific values for the system-wide parameters aq, oo, and a3 are not given. It
is suggested that all three parameters be restricted to values between 0 and 1 such that
a1 + ag + a3 = 1. and that a; and as be much larger than a3. However, these values can
be set to any value at the administrator’s discretion as the paper states that any desired
method for calculating RSV can be used.

After the new RSV is calculated, the node reconsiders all routes to that particular des-
tination. It selects the route with the highest RSV to be the new active route and updates
its routing table accordingly.

Unlike SAODV, TAODYV does not aim to prevent specific attacks through its additions
to AODV. Instead it looks to detect these attacks and provide the node with sufficient
information to re-route data around the attack.

4 Experimental Setup

Since ad-hoc networking’s most promising applications make use of small, resource-
constrained devices that are significantly different from today’s ever faster desktop com-
puters, special attention must be paid to the trade-off between strong cryptographic security
and DoS. While theoretical analysis or simulation may give helpful hints on the relative effi-
ciency of different approaches, only real world implementation and performance testing can
give a concrete picture of the actual width of this spectrum. Such measurements provide the
necessary information to determine which protocols are suitable for specific applications. In
addition, the results can then be used to guide the design of novel protocols better suited to
particular deployment situations.

In order to get an understanding for the real world performance of the AODV, SAODV,
and TAODYV protocols, we have implemented each of them on real hardware and measured
their performance. In this section we detail the setup for the experiments used to acquire
these measurements. We first describe the supporting hardware and software setup for our
implementations. We then present the specifics of the actual implementation for each of
the three protocols. Finally, we detail the design of the experiments used to evaluate the
protocols and explain why these tests are more relevant than other more common metrics.

4.1 Hardware and Software Setup

To gain an accurate grasp of protocol performance, the tests must be run hardware equivalent
to that which is commonly used in ad-hoc networks. For our testing we used the Sharp Zaurus
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CPU 206MHz Intel SA-1110 StrongARM
Memory | 64MB DRAM + 16MB Flash ROM
Card Slots 1 x Compact Flash type II, 1 x Secure Digital
Battery 950 mAH Lithium Ion

Table 1: Zaurus SL-5500 Hardware Specifications

SL-5500 model palmtops. Table 1 lists the hardware specifications for the SL-5500. From
the listing in Table 1, we see that the Zaurus is as powerful as a desktop computer was a
decade ago. With the rapid advances in technology, a device with these capabilities could
become the embedded sensor network device of the near future. Regardless, they allow
for an analysis using processors that are an order of magnitude out of step with today’s
conventional processors.

Each Zaurus was equipped with a Linksys WCF11 compact flash card for wireless commu-
nication. The Zauruses ran OpenZaurus [24] v3.5.4, an embedded version of Linux. In order
to compile programs for the Zaurus we used a cross-compiler toolchain based on GCC v3.3.4.
In addition, as described in Section 4.2, our code requires the OpenSSL [23] libraries. For this
purpose, OpenSSL v0.9.7j was cross-compiled and statically linked into executables where
necessary. All cross-compiling was performed on a desktop running Slackware Linux 11.0 [32].

4.2 Implementation

Our AODV implementation is the result of previous projects in this area [38]. The imple-
mentation is designed to run on the Linux operating system. As with many other AODV
implementations for Linux, it separates functionality into a kernel module and a userspace
daemon. The kernel module uses hooks in the netfilter interface to send packet headers
from the wireless interface to the userspace daemon. The daemon then determines how to
handle the packet. If the packet is a routing control packet, then the daemon processes the
packet in accordance with the AODV specification. If instead the packet is a data packet,
the daemon determines whether or not a route exists to the necessary destination. If there
is a suitable route, the packet is flagged and the kernel module queues it to be sent out.
If no route exists, the daemon begins route discovery. Once a route is found, the daemon
enters the route into the kernel’s routing table. It then flags the packet (and any additional
packets arriving during discovery) to be queued for transmission. The implementation is
written completely in C.

In order to implement SAODYV, it was necessary to have a library of cryptographic op-
erations. We used OpenSSL for this purpose, and we developed a security library which
wrapped much of OpenSSL’s functionality into components appropriate for ad-hoc routing
purposes. One particularly useful feature of the security library is that it allows easy use
of several different OpenSSL contexts at once. For SAODV, this was useful as nodes must
switch between signing, verifying, and hash chain operations rapidly to both send and receive
routing messages. New data structures were added for SAODV’s single signature extension
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Figure 1: Network Setup for Round Trip Timing Tests

and the necessary code was added to the message processing functions for RREQ, RREP, HELLO,
and RERR messages. The design of the AODV implementation allowed SAODV functionality
to be implemented while maintaining one binary with the ability to run both protocols.

Implementing TAODV required many additions similar to those involved in SAODV.
New data structures were used for the NTT as well as the extended messages and the new
R_ACK message. Similarly, message handling functions were updated to use the extensions
and take the appropriate actions. One challenge in implementing TAODV was counting
packets sent, forwarded, or received for a particular route. While it intuitively seems to be
something that should be implemented in the kernel module that is already tied into the
netfilter framework, this would require extra data exchange between the kernel module and
the daemon. Since our implementation already passes packet headers to the daemon for
route discovery initiation and flagging, it was sufficient to place the counting mechanism in
the daemon.

Keeping track of the additional routing information required significant extension of
our AODV implementation. The original implementation does not support any multi-path
entries in the routing table. Modifying it to support such a setup for TAODV would have
required rewriting significant amounts of the base AODV code. Instead, we implemented a
multi-path capable routing table for use exclusively by the TAODV protocol. When a node
initially discovers a route, or changes the active route to a particular destination, it merely
copies the necessary entry to the daemon’s local routing table and marks it as having been
altered so that it is updated in the kernel’s routing table at the next sync. This simplified
the implementation using only a negligible amount of extra memory.

4.3 Testing Setup

There were two performance factors we were interested in for the purposes of this comparison.
The first is the per-packet processing overhead. It is important to note that only CPU time
was measured. Therefore this overhead reflects use of the processor by each protocol. In
these tests we use AODV as a baseline. Thus, for SAODV we measure the time it takes to
generate an SSE for RREQ, RREP, and HELLO messages. We also measure the time it takes
for a node to verify an SSE for those same messages. For TAODV we measure how long it
takes a node to generate or process and update RREP and R_ACK messages. Due to the fact
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‘ Operation | Proc. Time (ms) | Std. Dev. |
SSE generation 30.8 0.028
SSE validation 3.81 0.006

Table 2: SAODV Per-Packet Overhead Times

that some of the operations we measure have a runtime less than the resolution of our timer
(10 ms as per the Linux kernel), we perform a large number of operations back-to-back per
measurement. We then make multiple measurements.

Our second performance metric is round trip time for route discovery. The justification
for this metric lies in the fact that we are looking at securing the routing control packets.
Once a route is established, data is forwarded with the same efficiency regardless of the
routing protocol. Therefore, it is important to see how the per-packet overhead along with
the increased packet size affect the time for route discovery. For this test, we measure
the performance of AODV in addition to that of SAODV and TAODV. This is necessary
because both AODV and TAODYV will generate RREPs after fewer hops when the destination’s
neighbor responds, while SAODV requires that the destination itself responds. For our
experiments, we used a five node network consisting of one laptop and four Zauruses as
illustrated in Figure 1. We used the network sniffer ethereal [7] running on the laptop to
measure the time elapsed from the sending of the RREQ to the receipt of the RREP. These
individual measurements were also performed repeatedly as explained in Section 5.

5 Results

In this section we present our results for both the per-packet and round trip time tests
described in Section 4.

5.1 Per-Packet Results

For the per-packet overhead tests, we measured the amount of processing time a node spends
above and beyond that required for conventional AODV. All tests were performed on the
Zauruses with only the necessary software running (i.e., no graphical login manager, no
X server, etc.). In the SAODV tests, we measure generation and validation of the SSE which
requires hash computation and a digital signature/verification. The hash function used for
these tests was MD5 and the digital signature/verification was performed using a 512-bit
RSA key pair. There were 1000 operations run per measurement and 1000 measurements
overall. Table 2 shows the results of our SAODV tests.

Consequently, in order to send a RREQ, RREP, or HELLO message, the node spends 30.8 mil-
liseconds generating the SSE. The significant impact on performance occurs in generating
the SSE for HELLO messages since they are sent periodically. According the to AODV spec-
ification, a node should send a HELLO message every HELLO_INTERVAL milliseconds unless it
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‘ Operation | Proc. Time (ms) | Std. Dev. |
RREP/HELLO send 0.0453 0.002
RREP/HELLO processing 0.0452 0.002
R_ACK send 0.193 0.004
R_ACK processing 0.297 0.005

Table 3: TAODV Per-Packet Overhead Times

has broadcast any messages during the previous interval. This means that only RREQ and
RERR messages could prevent sending a HELLO message, as all other messages are unicast.
Obviously, this can place a significant burden on each node.

Since SAODV requires that each message with a SSE is validated before any further
processing takes place, each RREQ and RREP gets delayed 3.8 milliseconds at each hop which
forwards it. In addition, HELLO messages take the same amount of time to be validated.
While nodes are supposed to let ALLOWED_HELLO_LOSS * HELLO_INTERVAL milliseconds pass
before deciding a link is broken and a neighbor should be removed from its routing table, it
is conceivable that on a node with several neighbors and a large amount of data to forward,
route status may fluctuate for some neighbors whose HELLO packets get delayed in validation.

In TAODV, we measure the per-packet overhead for RREP, HELLO, and R_ACK messages.
The system-wide parameters discussed in Section 3.3 do not influence the overhead of
TAODV for any of the tests we performed. However, it was necessary to fix these values to
allow for the calculation of RSV. For all TAODV tests we used the following system-wide
parameter values: 1 = 0.8, p, = 0.6, pp, = 0.4,p. = 0.2,a7 = 0.4, g = 0.4, and a3z = 0.2. Due
to the very small running time of the operations, one million operations were performed per
measurement and 5000 measurements were taken. Table 3 shows the results for the TAODV
tests.

As the results show, there is much less per-packet overhead for TAODV when compared
to SAODYV. The main source of overhead involved the R_ACK packets. Since the R_ACK packets
are new packets rather than packet extensions, it was necessary to allocate a packet buffer
in the message sending system of our implementation each time a R_ACK packet was to be
sent. With other messages that were extended, the packet buffer was already allocated and
the extension was simply written into free space at the end. This difference contributed
significantly to the 0.193ms overhead for sending the R_ACK message.

The overhead for processing the R_ACK message was almost completely due to the recal-
culation of the OTV and RSV values. The TAODV implementation used double primitives
for all calculations in order to keep with the protocol description in [21]. However, this af-
fects the performance since the SA-1110 processor in the Zaurus has only integer arithmetic
units. For systems with less computational power than the Zaurus’ these results suggest
that it may be necessary to rewrite trust-based metrics into their equivalent using integer
arithmetic instead.
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‘ Protocol ‘ Round Trip Time (ms) ‘ Std. Dev. ‘

AODV 138.177 0.765
SAODV 324.732 7.22
TAODV 152.780 0.863

Table 4: Round Trip Times

5.2 Round Trip Results

The round trip tests for route discovery were performed for all three protocols. This was
particularly important due to the differences in which node sends the RREP as described in
Section 4.3. Due to the nature of the measurements, only one route discovery operation
could be executed per measurement. Overall 5000 of these individual measurements were
performed. Table 4 shows the results of the tests.

These results show that SAODV is indeed a significantly more expensive protocol. Specif-
ically, SAODV takes 2.35 times as long as conventional AODV to get a RREP back to a RREQ
originator. This is due, in part, to the added cryptography and increased message size.
This is also due to the inability of intermediate nodes to respond to RREQs. Traversing the
additional hop in both directions adds to the latency. While we did not implement the DSE,
this should not have a large effect on the average route discovery since a destination now has
to generate two digital signatures for a RREP. In addition, DSE only addresses the overhead
incurred by intermediate nodes not responding to RREQs. There still is overhead from the
added cryptography and increased message size which implementing DSE will not solve.

The results also show that the use of SAODV will require adjustments to the recommen-
dations for configurable parameters in AODV. This is missing from the current draft standard
for SAODV. For example, the current suggested NODE_TRAVERSAL_TIME is 40 ms which re-
sults in NET_TRAVERSAL_TIME being set to 1400 ms. The value of NET_TRAVERSAL_TIME serves
as the timeout for RREQ messages. Consequently, as per the results above, if these parame-
ters were not adjusted, nodes would have problems discovering routes of length greater than
seventeen hops. In some applications this may not cause problems. However, in certain
applications such as large area sensor networks, routes of this length or greater would not
be unreasonable to expect.

TAODV, on the other hand, takes only 1.11 times as long as AODV. This shows that the
trust-based calculations and additional information exchange can be used without incurring
the overhead of SAODV. While there is some expense for the trust calculations, it is not
nearly as expensive as the cryptographic operations. The results show that TAODYV is indeed
at the opposite end of the trade-off from SAODV. This is due to the fact that the TAODV
information itself in each packet is not secured.

Overall, the results show that there is indeed a wide spectrum in the trade-off between
cryptographic security and DoS. By adding an appropriate lightweight security mechanism
to secure the trust information in the routing packets, a hybrid protocol can be created which
is less expensive than SAODV and more secure than TAODV. Future protocol designs should
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seek to use various new combinations of smarter, trust-based metrics and lightweight security
mechanisms in order to develop hybrid protocols across this spectrum.

6 Conclusion

In this paper, we have compared the SAODV and TAODYV protocols for securing ad-hoc net-
work routing. We presented the results of implementation and evaluation of both protocols
on real resource-limited hardware. The expected difference between the two protocols was
shown to be consistent with this real world scenario. These experiments showed that there
is significant room between the two protocols for a secure hybrid protocol to be developed
which takes advantage of the strongest points of both.

Future work needs to delve further into the extensive body of work on various trust
metrics. This includes the testing of other trust metrics for use in ad-hoc routing as well as
developing the aforementioned hybrid protocols and testing their performance against the
results presented in this paper. In addition, it is necessary to test the quality of the routing
decisions produced by all of these protocols in a malicious environment.
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