
An Approach to Enhance Inter-Provider Roaming Through
Secret Sharing and its Application to WLANs

Ulrike Meyer
∗

Darmstadt University of Technology
Germany

umeyer@cdc.informatik.tu-darmstadt.de

Jared Cordasco and Susanne Wetzel
Stevens Institute of Technology

USA

{jcordasc,swetzel}@cs.stevens.edu

ABSTRACT
In this paper, we show how secret sharing can be used to
address a number of shortcomings in state-of-the-art public-
key-based inter-provider roaming. In particular, the new
concept does not require costly operations for certificate val-
idation by the mobile device. It furthermore eliminates the
need for a secure channel between providers upon roaming.
We demonstrate the new approach by introducing a new pro-
tocol, EAP-TLS-KS, for roaming between 802.11i-protected
WLANs. In addition, we show that the properties of EAP-
TLS-KS allow for an efficient integration of a micropayment
scheme.

Categories and Subject Descriptors
C.2.0 [Computer-Communications Networks]: Secu-
rity and Protection; C.2.1 [Network Architecture and

Design]: Wireless Communications

General Terms
Security

Keywords
802.11i, EAP-TLS-KS, inter-provider roaming, micropay-
ment scheme, secret sharing, PKI, distributed DSS, WLAN

1. INTRODUCTION
As WLAN hotspots become more widely available in air-

ports, train stations, coffee shops and hotels, there is an in-
creasing need for easy to use authentication protocols which
enable roaming between different Wireless Internet Service
Providers (WISPs). Most WISPs currently use the web

∗
The research was done while the author was at Stevens Institute

of Technology. The visit was partly funded by the German Aca-
demic Exchange Service (DAAD) and the German Research Founda-
tion (DFG).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WMASH’05, September 2, 2005, Cologne, Germany.
Copyright 2005 ACM 1-59593-143-0/05/0009 ...$5.00.

based Universal Access Method (UAM) for authentication—
a method which is also recommended as the best current
practice for inter-provider roaming by the Wi-Fi Alliance [5].
However, UAM is known to be vulnerable to many different
attacks such as impersonation of an access point, dictio-
nary attacks, and service theft by means of address spoof-
ing [46]. The new standard 802.11i [25] was put forward to
address these problems. It uses MAC-layer encryption be-
tween mobile devices and access points and is thus secure
against service theft by means of address spoofing. Further-
more, it requires mutual authentication between a Mobile
Device (MD) and a network. The authentication methods
supported by the standard either use public-key certificates
or are based on other types of credentials.

Public-key-based methods in principle have the advan-
tage that a Foreign Network (FN) and MD can authenticate
each other without the involvement of MD’s Home Network
(HN). However, most roaming scenarios—in particular com-
mercial ones—require that every instance of roaming be con-
trolled by HN. Therefore, most public-key-based methods
and all non-public-key-based methods suggested for roam-
ing to date require that the mutual authentication involves
HN. That is, HN authenticates MD and assures FN of MD’s
authorization to roam to FN. Similarly, HN authenticates
FN and assures MD of FN’s authorization to offer service
to MD.

Furthermore, in authentication methods that require
HN’s interaction, the cryptographic keys used for MAC-layer
protection (between MD and FN) following a successful au-
thentication are typically generated by HN. This requires
HN to establish a secure channel to FN in order to allow for
a secure transfer of these cryptographic keys.

Another shortcoming which is common to all public-key-
based authentication methods for roaming users is that MD
must check the validity and revocation status of certificates
during network authentication, i.e., before actually having
network access. Recent work (e.g., [10]) addresses this prob-
lem by delegating certificate chain discovery and validation
to a trusted authority.

In this paper, we address the shortcomings of state-of-
the-art public-key-based roaming methods by introducing
suitable secret sharing techniques.

Contributions:

First, instead of issuing an individual PKI-certificate for
each FN, we suggest for HN to use only one roaming certifi-
cate. HN shares the secret key corresponding to the roaming
certificate with each one of its roaming partners by means

of a (2, 2) secret sharing scheme. Upon roaming to FN, MD
authenticates FN based on the pre-installed roaming certifi-
cate of its HN. The key splitting guarantees that MD cannot
authenticate FN without HN’s participation.

Second, we show that our new key splitting approach al-
lows for efficient certificate handling. In particular, MD does
not need to validate any certificates upon roaming as HN’s
certificate is pre-installed on MD.

Third, we show that the use of secret sharing eliminates
the need for a secure channel between FN and HN upon
public-key-based roaming of MD. This is due to the fact
that the splitting of the secret key allows FN to derive any
necessary keying material itself.

Furthermore, we present a new protocol EAP-TLS-KS
which implements the new concept based on EAP-TLS. The
new protocol can be used as an EAP-Method within 802.11i
and as such enhances WLAN inter-provider roaming. EAP-
TLS-KS is designed such that it differs from the original
EAP-TLS protocol only on the server side. In particu-
lar, it is the public-key operations which are performed by
HN in EAP-TLS—such as decryptions and signatures—that
are split between HN and FN in EAP-TLS-KS. We specify
three protocol variants in order to support all types of EAP-
TLS certificates. The first and second variants use conven-
tional distributed RSA operations. For the third variant, we
present a new distributed DSS signature scheme. This new
scheme can generally be used in applications that exhibit an
asymmetry in signing capabilities of the individual parties.
That is, while one party (in our case HN) can generate valid
signatures on its own, the second party (in our case FN)
requires the other party’s cooperation in order to generate
a valid signature. We also show that the new EAP-TLS-
KS protocol has a performance advantage over EAP-TLS.
While the original EAP-TLS protocol needs four round-trip
message exchanges between HN and FN, the new protocol
requires only two.

Aside from addressing the security problems of current
roaming solutions we also show how key splitting can be used
to efficiently support the fine grained billing of a micropay-
ment scheme. In our key splitting, HN keeps an individual
share of the secret roaming key for each FN. An authentica-
tion based on the roaming key can thus not only prove FN’s
authorization by HN to MD but also prove FN’s identity to
MD. This allows MD to issue micropayments for a particu-
lar FN. Exploiting this fact in the context of EAP-TLS-KS,
we present a modified version of the micropayment scheme
introduced in [14] and show that its expensive initializa-
tion phase can efficiently be integrated into EAP-TLS-KS:
the integration adds only one message to our new protocol.
We also show that the original micropayment scheme suf-
fers from a malicious service provider attack. Our modified
protocol can be protected against this attack due to MD’s
knowledge of FN’s identity.

Outline: In Section 2 we give an overview of the security
architecture of 802.11i. This is followed by an overview of
EAP-TLS in Section 3. In Section 4 we first introduce the
new concept of roaming with key splitting and then focus
on its application to WLAN. In particular, we introduce a
new method for distributed DSS signatures in Section 4.2.3.
This is followed by a detailed discussion of the EAP-TLS-
KS protocol including a security analysis. Our accounting
mechanism is described in Section 5. We close the paper by
summarizing related work in Section 6.

Access PointMobile Device Authentication Server

EAP

802.1X/EAPoL

802.11

EAP−Method

RADIUS

UDP/IP

802.3

Part of IEEE 802.11i

Not part of IEEE 802.11i

Figure 1: Protocol Architecture in 802.11i

2. OVERVIEW OF 802.11i
In June 2004, 802.11i was adopted as the new security

standard for the wireless LAN technology 802.11 [25]. It re-
places the original security architecture WEP (Wired Equiv-
alent Privacy) which was shown to be insecure in many re-
spects. 802.11i offers access control via mutual authentica-
tion between MD and the network. In addition, it protects
the confidentiality and integrity of the air interface between
MD and an Access Point (AP).

2.1 Authentication
The new standard, 802.11i, supports two different authen-

tication and key agreement methods: one that is based on a
pre-shared key and one that is based on 802.1X [24]. In the
following we only refer to the latter.

The 802.1X-based authentication is implemented as a pro-
tocol between MD, the AP it associates with, and an Au-
thentication Server (AS) which controls the network access
for one or more APs. The MD first associates with an AP
within its range using WEP’s open authentication. The as-
sociation only enables MD to exchange authentication data
with AS. Any other traffic is blocked until the authentication
is completed successfully. The standard does not specify any
particular authentication protocol to be used between MD
and AS. Instead, it specifies a WLAN-adapted implementa-
tion of the Extensible Authentication Protocol (EAP) [11]
on top of which different authentication methods can be
used.

Figure 1 describes the general protocol architecture be-
tween MD, AP, and AS. EAP-Method stands for the ac-
tual authentication mechanism used. EAP-Methods defined
to date include EAP-TLS [2], EAP-TTLS [15], and EAP-
SIM [22]. It is important to note that only key generat-
ing EAP-Methods can be used in connection with 802.11i.
EAP itself is the end-to-end transport protocol for the EAP-
Method between MD and AS. EAPoL transports EAP over
802.x LANs and implements a port-based access control.
Each association of MD with an AP creates a pair of IEEE
802.1X-controlled ports. Both sides implement a port block-
ing that blocks all traffic until the 802.1X authentication
procedure completes successfully. RADIUS [40] can be used
to transport EAP over IP to establish an authenticated
channel between AP and AS as well as to securely trans-
port the generated key from AS to AP. The use of RADIUS
is not required but suggested in the standard.

2.2 Key Generation
If the 802.1X-based authentication is used, MD and AS

generate a secret Pairwise Master Key (PMK) using an
EAP-Method. After generating the PMK, AS transfers
PMK to the AP that MD is associated with.

Both AP and MD use the EAPoL-Handshake to gener-
ate a Pairwise Transient Key (PTK). PTK is derived from
PMK, the MAC addresses of MD and AP, as well as two

PTK generationPTK generation

Authentication ServerAccess PointMobile Device

802.11 association

PTK generation + confimation

EAP−Authentication and PMK generation

PMK transfer

802.11 traffic
encrypted and integrity

with TK

EAPoL−Handshake

Figure 2: Overview of 802.11i

Client Server

TLS−message*

*

*

Validate client cert.
Verify client sig.

EAP−Request message

EAP−Response message

EAP−Success message

Request−Identity

Response−Identiy

Client−Hello

Server−Hello*

*

*

Server−Certificate

[Server−Key−Exchange]

Client−Certificate−Request *

Server−Done*

Client−Certificate *

Client−Key−Exchange*

*Client−Certificate−Verify

Changed−Cipher−Specs *

Finished

Changed−Cipher−Specs

*

Finished *

Empty

EAP−Success

EAP−Request {TLS−Start}

[Verify server sig.]
Validate server cert.

Figure 3: Overview of the EAP-TLS Protocol

nonces generated by and exchanged between the two par-
ties. PTK consists of three parts. The first one is used for
key confirmation in the EAPoL-Handshake, the second part
is used for encrypted transfer of the Group Transient Key
(GTK), used for broadcast traffic from AP to all associated
MDs, and the last part is used as the Temporal Key (TK) for
encryption and integrity protection of the subsequent 802.11
traffic. Figure 2 provides an overview of the 802.1X-based
authentication and key agreement.

3. OVERVIEW OF EAP-TLS
EAP-TLS is an EAP-Method defined in RFC 2716 [2]

based on TLS [16]. It supports either mutual public-
key certificate-based authentication or server authentication
only. If EAP-TLS is used in 802.11i for server authenti-
cation only, another authentication method must be com-
bined with EAP-TLS to implement client authentication. In
the following we describe the use of EAP-TLS with mutual
certificate-based authentication. Figure 3 gives an overview
of the EAP-TLS protocol and shows the encapsulation of
TLS in EAP messages: After agreeing upon the use of EAP,
AS sends the client (in our case MD) an EAP-Request mes-
sage requesting the client’s identity. The client answers with
an EAP-Response message including its identity. AS then
sends the TLS-Start message in an EAP-Request message
and the TLS-Handshake begins:

The client sends the TLS-Client-Hello message in an
EAP-Response message to the server. Client-Hello in-
cludes a random number Client.RAND that guarantees
the freshness of the resulting keys to the client. The
server answers with an EAP-Request message including

the TLS messages Server-Hello, Server-Certificate,
Client-Certificate-Request and Server-Done, and op-
tionally the Server-Key-Exchange message. Server-Hello

includes a random number Server.RAND that guarantees
key freshness to the server. The certificate of the server is
of one of the following three kinds:

1. A certificate including a public RSA key usable for
encryption and signed by a CA with an RSA signature
key. (RSA)

2. A certificate including a public RSA key usable for
RSA signature verification, signed by a CA with an
RSA signature key. (DHE-RSA)

3. A certificate including a public DSS key usable for DSS
signature verification, signed by a CA with a DSS sig-
nature key. (DHE-DSS)

EAP-TLS supports two methods for generating keying ma-
terial. One is RSA encryption based (RSA case) and the
other is based on a Diffie-Hellman key exchange (DHE case).
In the RSA case, the server uses a certificate of type RSA
and no Server-Key-Exchange is sent. In the DHE case, the
server uses a certificate of type DHE-RSA or DHE-DSS and
Server-Certificate is followed by Server-Key-Exchange.
This message includes the server’s public DH value for this
protocol instance. The hash value of the server’s public DH
value concatenated with Client.RAND and Server.RAND is
signed with the server’s RSA or DSS signature key and in-
cluded in Server-Key-Exchange.

The client answers with EAP-Response including the TLS
messages Client-Certificate, . . ., Finished. Client-Cer-
tificate is a DHE-RSA or a DHE-DSS certificate, de-
pending on what type of certificate the server requests.
Client-Key-Exchange is different for the RSA case and the
DHE case:

1. In the RSA case, Client-Key-Exchange includes a ran-
dom number Sec.RAND generated by the client and
encrypted with the server’s public key.

2. In the DHE case, Client-Key-Exchange message in-
cludes the client’s public DH value.

In order to prove its identity to the server, the client’s re-
sponse includes Client-Certificate-Verify. This mes-
sage contains a hash value of all messages sent and re-
ceived so far starting from Client-Hello up to and including
Client-Key-Exchange and is signed using the client’s signa-
ture key. The same EAP-Response message also includes
Change-Cipher-Specs and Finished. With the former, the
client indicates that it will now use the new ciphers and keys.
The latter, which is protected with the new cipher-suite and
keys, confirms that the client uses the same cipher-suite and
keys as the server.

The server answers with the Change-Cipher-Specs and
the Finished messages. By verifying the correct encryption
of the Finished message, the client obtains a proof of the
server’s identity since only the server can generate the cor-
rect session key. The client indicates successful receipt and
verification by replying with an empty EAP-Response mes-
sage. The EAP-TLS protocol ends with an EAP-Success

message sent from the server to the client.
Figure 4 details the RSA case. The server certificate in-

cludes a public RSA encryption key. Server-KeyExchange

ServerClient

PRNG Master Secret

Client.RAND

Server.RAND

Sec.RAND

Generation of Master Secret:

...

...
Client−Key−Exchange

Sec.RAND encrypted with server’s

public RSA encryption key

public RSA key

Server−Certificate

Figure 4: EAP-TLS with RSA

Client Server...

...
PRNG Master Secret

Generation of Master Secret:

Client.RAND

Server.RAND

DH key

Public DH Key of server signed with

Public DH Key of client

Client−Key−Exchange

DSS or RSA

DSS or RSA signature verification key

Server−Certificate

Server−Key−Exchange

Figure 5: EAP-TLS with DHE

is not sent. Client-Key-Exchange consists of a ran-
dom number Sec.RAND encrypted with the server’s pub-
lic RSA key. Server and client generate the master secret
by using Client.RAND, Server.RAND and Sec.RAND as
input to a Pseudo-Random Number Generator (PRNG).
Figure 5 details the DHE case. Server-Certificate in-
cludes a public RSA or DSS signature verification key.
Server-Key-Exchange includes the public DH value of the
server and is signed with the server’s private RSA or DSS
key. Client-Key-Exchange includes the public DH value of
the client. The client computes a DH key from the public
DH value of the server and its secret DH value. The server
computes the DH key from the public DH value of the client
and its own secret DH value. Both compute the master se-
cret by using the Client.RAND, the Server.RAND and the
common DH key as input to a PRNG.

4. ROAMING WITH KEY SPLITTING

4.1 General Concept
In state-of-the-art public-key-based roaming, MD authen-

ticates FN based on FN’s individual public-key certificate.
The key idea of using secret sharing in this setting is to
replace the individual certificates for FNs by means of a
suitable key splitting between HN and FNs in combination
with issuing a certificate for HN only. In detail, this works
as follows:

Every HN is issued one roaming certificate. Assuming
HN has a pairwise roaming agreement with l foreign net-
works FN1, . . . FNl, HN splits its secret roaming key R into
l different pairs of shares (RHNi

, RFNi
) by means of indi-

vidual (2, 2) secret sharing schemes with RHNi
6= RHNj

and

RFNi
6= RFNj

for i 6= j. HN then distributes RFNi
to FNi.

1

Unlike in other secret sharing applications, in our approach
HN keeps copies of RHNi

as well as the secret roaming key R.
This not only allows HN to use the secret roaming key in
case MD wants to access HN directly but also enables HN

1
In standard secret sharing notation, this corresponds to implement-

ing the access structure Γ = {{HN}, {HN1, FN1}, . . . , {HNl, FNl}}
as an iterative threshold scheme of type (1, l)[(2, 2), . . . , (2, 2)]. Un-
like in the conventional secret sharing setting, in our approach the
HNi (i = 1, . . . , l), in fact, do not represent distinct share holders but
the respective shares are all held by HN.

to issue suitable shares to new roaming partners. By con-
struction, R can be recovered from a collection of shares,
if and only if this collection includes a pair (RHNi , RFNi)
for some i ∈ {1, . . . , l}. In particular, R cannot be recon-
structed from any pair (RHNi

, RFNj
) (with i 6= j) or any

collection of shares of foreign networks only. Constructing
key pairs with (RHNi

, RFNi
) 6= (RHNj

, RFNj
) for i 6= j is

necessary in order to allow for unique identification of FNi

upon successful authentication.
Authenticating FN by MD using public-key certificates

generally involves related operations by both FN and HN
such as decryptions or generating signatures. By introduc-
ing the mechanism of key splitting, these operations need to
be adapted accordingly. In particular, these operations are
now split between HN and FN using distributed decryption
or distributed signature generation.

Upon roaming to FN in this new framework, MD now al-
ways uses the pre-installed certificate of its HN regardless
of FN’s identity. Consequently, MD does not have to vali-
date any certificate. In particular, HN’s participation in a
successful authentication automatically confirms the use of
a valid roaming key.2 Aside from simplifying the handling
of certificates considerably, the new key splitting approach
may entail additional advantages over state-of-the-art solu-
tions. This potentially includes a reduction of the number of
round-trip message exchanges between MD and HN. Simi-
larly, it may eliminate the need for a secure channel between
FN and HN which, for example, is used to transfer a master
key from HN to FN. This is due to the fact that the key
splitting allows FN to use its share to derive the master key
from information secured by HN’s share.

In the remainder of this section, we introduce the EAP-
TLS-KS protocol which implements the new key splitting
approach based on EAP-TLS, thus enhancing WLAN inter-
provider roaming.

4.2 EAP-TLS with Key Splitting
Applying the new concept of key splitting to EAP-TLS,

each HN is issued a roaming certificate, that includes a pub-
lic RSA encryption key, a public RSA signature verification
key, or a public DSS signature verification key. HN splits
and distributes the secret roaming key as described in Sec-
tion 4.1. Each MD stores the roaming certificate of its HN.

Upon roaming to FN, FN and MD initiate an EAP-TLS-
KS authentication. MD acts like a regular client in the EAP-
TLS protocol as the EAP-TLS-KS protocol differs from
EAP-TLS only on the server side. Depending on the type of
roaming certificate, either RSA decryption, RSA signature
generation or DSS signature generation is split between HN
and FN using their respective shares of the secret roaming
key. In the following we detail the distributed schemes as
well as the key splitting for an RSA encryption key, an RSA
signature key, and a DSS signature verification key as the
public roaming key.

4.2.1 Distributed RSA Decryption
The public roaming key is a pair (n, e) of an RSA mod-

ulus n = pq with p, q prime and an RSA encryption key
e with gcd(e, ϕ(n)) = 1. The secret roaming key d is the
inverse of e modulo ϕ(n): ed = 1 mod ϕ(n). Let l be

2
In order to avoid an impersonation attack, it is mandatory for HN

to immediately notify all of its MDs of the revocation of the current
roaming certificate due to compromise and distribute a new one.

the number of FNs to receive a share of the secret roam-
ing key from HN. Then, HN splits the roaming key d
into dHNi , dFNi for i = 1, . . . , l implementing the access
structure Γ in the following way: HN randomly chooses
ω1, . . . , ωl ∈ Z ϕ(n)

2

such that ωi 6= ωj for i 6= j. Then,

dHNi
=d + 2ωi mod ϕ(n), i = 1, . . . , l

dFNi
=d + ωi mod ϕ(n), i = 1, . . . , l.

Consequently, d = −dHNi
+ 2dFNi

mod ϕ(n), for all i =
1, . . . , l. HN distributes dFNi

to FNi and keeps copies of all
ωi as well as d.

Since ωi 6= ωj , each FN gets a different share. Since ad-

ditionally 0 ≤ ωi ≤
ϕ(n)

2
, it holds that 2ωi 6= 2ωj for i 6= j.

Thus, HN keeps a different share for each FN. The pair of
shares (dHNi

, dFNi
) for a foreign network FNi thus uniquely

carries the identity of FNi.
HN and any single FNi can now decrypt a message m

encrypted to c = me with the public encryption key e in
a distributed way: HN first computes c−dHNi and sends
the result to FNi. FNi then computes c−dHNi c2dF Ni =
c−dHNi

+2dF Ni = cd = m.

Security Analysis: No FN can decrypt any message en-
crypted with e on its own as the knowledge of its share does
not reveal any information about the decryption key d. Fur-
thermore, by construction no pair or any larger coalition of
FNs learn anything about the secret key from combining
their key shares.3

An attacker intercepting the message c−dHNi sent from
HN to FNi, does not obtain any information on the plain-
text m. Otherwise, the attacker would be able to break an
RSA encryption with the public key −edHNi which contra-
dicts the RSA assumption. Likewise, an attacker does not
gain any information on dHNi

from his knowledge of c−dHNi .
For a more formal security analysis of additional properties
of this distributed RSA decryption scheme we refer to [12].

4.2.2 Distributed RSA Signatures
The public roaming key is a pair (e, n) of an RSA mod-

ulus n = pq with p, q prime and RSA signature verification
key e with gcd(e, ϕ(n)) = 1. The secret roaming key d is
the inverse of e modulo ϕ(n). The key splitting works ex-
actly as in the RSA encryption-based case previously de-
scribed. HN, together with any one of the foreign net-
works FNi, can sign the hash value h(m) on a message m

in the following distributed way: HN half signs h(m) by
computing DdHNi

(h(m)) = h(m)−dHNi and sends the re-

sult to FNi. FNi computes s = h(m)−dHNi h(m)2dF Ni =
h(m)−dHNi

+2dF Ni = h(m)d. Upon receipt of s and m, MD
can check the signature by verifying that h(m) = se mod n.

Security Analysis: By construction, knowing only its
share does not allow FN to sign a hash value by itself. Fur-
thermore, no pair or larger coalition of FNs learn anything
about the secret key by pooling their key shares.

An attacker intercepting the half signed hash value
h(m)−dHNi sent from HN to FNi cannot complete the sig-
nature without knowledge of dFNi

. If an attacker could
generate a valid signature h(m)d on h(m) from h(m)−dHNi ,
he could compute h(m)2dF Ni = h(m)d−dHNi and thus gen-
erate valid RSA signatures for a secret key dFNi

. Thus,
3
The foreign networks learn, that their shares themselves are not the

secret. This reduces the number of possible values for d from ϕ(n) to
ϕ(n) − k.

the above distributed signature scheme is as secure as the
original RSA signature. For a formal analysis of additional
security properties we refer to [30].

4.2.3 New Distributed DSS Signatures
The public roaming key is a DSS signature verification

key (p, q, α, y), where p and q are primes, q|(p − 1), α ∈ Zp,
ord(α) = q, y = αa mod p. The secret roaming key is a,
which is randomly chosen from {1, . . . , q−1}. The signature
generation for the hash value h(m) of a message m for non-
distributed signatures works as follows: The signer chooses
a fresh k−1 ∈ {1, . . . , q−1} for each signature and computes

r = α
k−1

mod p mod q

s = k(h(m) + ar) mod q.

The signature on h(m) then consists of the pair (r, s). For
a more detailed description of the DSS signature generation
and verification see [34].

For a distributed DSS signature it is necessary to split
both the secret key a as well as the ephemeral key k between
HN and FNi. In our new signature scheme, HN splits the
secret key a for each i = 1, . . . , l multiplicatively into two
parts aFNi

and aHNi
. It distributes aFNi

to FNi and keeps
a copy of each pair of shares (aFNi

, aHNi
).

During signature generation, the ephemeral key k is cho-
sen in a distributed manner. That is, FNi contributes one
part, KFNi

, while HN contributes two parts, KHN and kHN .
KFNi

is known to FNi only. KHN and kHN are known to
HN only. KHN and KFNi

combine to kFNi
which becomes

known to both HN and FNi during signature generation.
The ephemeral key k is the product of kHN and kFNi

.4

Without loss of generality, the multiplicative splits of a are
generated by first using an additive splitting in the exponent
rather than directly splitting it multiplicatively:5 HN selects
x ∈ {1, . . . , q−1} randomly and chooses ω1, . . . , ωl randomly
in Z q−1

2
with ωi 6= ωj for i 6= j. Then,

xHNi = x + 2ωi mod q − 1

xFNi
= x + ωi mod q − 1.

Thus, x = −xHNi
+ 2xFNi

mod q − 1 for all i = 1, . . . , l.
Obviously, all shares are different: xHNi 6= xHNj for i 6= j
and xFNi

6= xFNj
for i 6= j. HN defines a = αx mod p

mod q and

aHNi = α
−xHNi mod p mod q, i = 1, . . . , l

aFNi
= α

2xF Ni mod p mod q, i = 1, . . . , l

such that aHNi
· aFNi

= α−xHNi · α2xF Ni = αx = a mod p
mod q. HN together with any FN can now generate a dis-
tributed DSS signature as follows: FNi first chooses KFNi

randomly from {0, . . . q − 1} and sends αKF Ni to HN. HN
then chooses KHN , k−1

HN , RHN and R∗

HN randomly in Z
∗
q

and computes k−1
FNi

= (αKF Ni)KHN mod p mod q. HN
ensures that k = kFNi

kHNi
mod q has not yet been used

with the same secret key a before. Then, HN computes

4
Instead of generating kF Ni

as a combination of KHN and KF Ni
,

FN can alternatively generate kF Ni
on its own and send it to HN. In

this case, however, a secure channel between HN and FNi is needed.
5
It can easily be checked that both methods are equivalent. Never-

theless, the former allows for a simpler argument in that all splits are
different.

r = α
k
−1
HN

·k
−1
F Ni and

sHN =(kHN − RHN)kFNi
· h(m)

+ (kHN · aHNi
− R

∗

HN)kFNi
· aFNi

· r

= kHN · kFNi
· h(m) + kHN · kFNi

· aFNi
· aHN · r

| {z }

=:s

− RHN · kFNi
· h(m) − R

∗

HN · kFNi
· aFNi

· r

HN sends αKHN , r, sHN , RHN and R∗

HN to FNi. FNi

determines k−1
FNi

= (αKHN)KF Ni and

sFNi
= kFNi

· RHN · h(m) + kFNi
· R∗

HN · aFNi
· r.

Now FNi can compute the signature part s on h(m) as s =
sFNi

+ sHN . The pair (r, s) is now a valid DSS signature
on the hash value h(m) with a = aHNi

· aFNi
and k =

kFNi
·kHN . Thus, it can be verified by MD in the same way

as a non-distributed DSS signature with ephemeral key k
and secret key a.

Security Analysis: By construction, FN cannot generate
a valid signature on its own as its share does not provide
any information on the key a.

An attacker cannot generate sFNi
without knowledge of

kFNi
and aFNi

. This is due to the fact that sFNi
is indeed a

DSS signature on RHN ·h(m) with ephemeral key kFNi
and

long term key aFNi
·R∗

HN . If DSS is secure against existen-
tial forgery, then it is not possible to generate sFNi

without
knowledge of kFNi and aFNi · R

∗

HN . This is equivalent to
the knowledge of kFNi

and aFNi
as R∗

HN is public.
Two or more collaborating FNs cannot generate a valid

signature as they cannot reconstruct the secret key a from
their shares.

From intercepting αKHN , r, sHN , RHN , R∗

HN and (s, r)
an attacker cannot derive any information on a, aHNi or
aFNi

.
HN chooses its contribution to k without revealing it to

FN. HN makes sure that no value of k is used twice to gen-
erate a signature. FN or any attacker that interferes with
the DH exchange used to exchange kFNi

thus can not force
the same k to be used twice.6

Unlike in the two RSA cases discussed previously, in the
DSS case HN uses its knowledge of the shares of the FNs
during the signature generation process. As discussed ear-
lier, it is HN that should control authentication as it will
be the entity responsible for accounting. Nevertheless, it is
important to note that the discussed distributed version of
DSS is restricted to areas of application where one of the
signers can sign on its own, while the other will need the
cooperation of the first party to generate signatures.

Section 6 will provide a detailed discussion on how our
distributed DSS signature scheme differs from previous work
in the area.

4.3 The Protocol

4.3.1 RSA Encryption-Based Key Generation
Figure 6 describes the EAP-TLS-KS protocol in the case

where an RSA encryption key is used as the public roaming
key and the key generation is based on RSA encryption. The
protocol starts with the regular EAP-Request-Identity and
EAP-Response-Identity messages, and the EAP-TLS-Start

6
It is well known that in DSS, using the same ephemeral key k twice

with the same secret key a reveals a [34].

HN Auth. ServerFN Auth. ServerMobile Device

EAP−Request [TLS−Start]

Validate MS certificate

PRNG Master Secret

Client.RAND

Server.RAND

Sec.RAND

Generation of Master Secret:

Request−Identity

Client−Certificate

Client−Key−Exchange

{D_MS(Hash(Client−Hello,..., Client−Key−Exchange))}

Client−Certificate

{D_MS(Hash(Client−Hello,..., Client−Key−Exchange))}

Client−Certificate−Request

Server−Done

Client−Key−Exchange

Finished

Changed−Cipher−Specs

Client−Hello

Client EAP−ID, FN−ID

Changed−Cipher−Specs
Finished

Empty

Response−Identiy

EAP−TLS−KS−Start

Server−Hello

Server−Certificate

Client−Certificate−Verify

EAP−Success

EAP−TLS−KS−Success

{RSA−public encryption key, FN−ID}

= Sec.RAND

Generate Master Secret

Generate Master Secret

PSfrag replacements

Sec.RANDe

(Sec.RANDe)dHNi

{DMS(Hash(Client-Hello, ..., Client-Key-Exchange))}

Verify DMD(Hash(...))

(Sec.RANDe)dHNi (Sec.RANDe)dF Ni

Figure 6: EAP-TLS-KS with RSA

message between FN’s authentication server and MD. Af-
ter receiving MD’s identity, FN sends an EAP-TLS-KS-Start

message to HN. This message includes the client’s EAP-ID
as well as the identity of FN. All of the following EAP-
TLS messages, starting with Client-Hello and ending with
Client-Certificate-Verify, are forwarded between MD
and HN by FN.

In order to acknowledge FN’s identity to MD, HN includes
FN’s identity in any of the TLS messages it sends to MD. In
order to avoid any changes to the EAP-TLS implementation
for MD, we integrate FN’s identity (FN-ID) as an attribute
into the roaming certificate. MD can thus store the roaming
certificate and refer to FN’s identity at any time. Upon
receipt of the Server-Certificate message (which includes
the roaming certificate), MD checks that the roaming key in
the certificate matches the pre-installed key.

If they are equal, then MD chooses a random num-
ber Sec.RAND and encrypts it under the public roam-
ing key e. MD computes the hash value of all messages
from the Client-Hello up to the Client-Key-Exchange

messages, signs this hash value and includes it in
the Client-Certificate-Verify message. MD then
sends the Client-Certificate, Client-Key-Exchange,
Client-Certificate-Verify, Change-Cipher-Specs and
the Finished messages to FN.

FN forwards the messages Client-Certificate,
Client-Key-Exchange and Client-Certificate-Verify to
HN. HN verifies MD’s certificate and its revocation status
as well as the signature on the Client-Certificate-Verify
message. The correctness of the signature proves to HN
that MD is in possession of the secret key corresponding to
the public key in MD’s certificate. It furthermore proves
that none of the messages exchanged between MD and HN
so far have been altered in any way. In particular, this

proves that MD received the same FN-ID as an attribute in
the roaming certificate that HN sent. Thus, HN knows that
both HN and MD associate the same identity with FN.

If the signature verification is successful, HN sends the
half decrypted random number (Sec.RANDe)−dHNi to FN.
The receipt of this message assures FN that HN has suc-
cessfully authenticated MD and thus authenticates MD in-
directly to FN. FN fully decrypts Sec.RAND by comput-
ing (Sec.RANDe)−dHNi · (Sec.RANDe)2dF Ni = Sec.RAND.
FN can now compute the secret master key PMK =
PRNG(Client.RAND, Server.RND, Sec.RAND).

The Change-Cipher-Spec message indicates that the
sending party will now switch to encryption mode. The
Finished messages exchanged between FN and MD are en-
crypted with the secret master key PMK. By verifying that
the Finished message it received is correctly encrypted, MD
is assured that FN was able to generate the correct key. MD
is furthermore assured that HN participated in the authen-
tication and that the identity FN claimed to HN is correct
and corresponds to the one included as an attribute in the
roaming certificate.

4.3.2 DHE-RSA Case
Figure 7 describes the changes in the EAP-TLS-KS

protocol in case an RSA signature key is used as
the public roaming key and this key is used to sign
the Server-Key-Exchange message which includes the
ephemeral DH key part (Server-Pub-DH) generated by HN.
Upon receipt of the Client-Hello message, HN computes
the hash value

h(m) =h(Client.RAND||Server.RND||Server-Pub-DH)

and half signs it to h(m)−dHNi . HN then con-
structs the EAP-Request message including Server-Hello,
Server-Certificate (with the RSA public encryption
key as roaming key and FN’s identity as attribute),
Server-Key-Exchange, Client-Certificate-Request, and
Server-Done. HN includes the half signed hash in
Server-Key-Exchange.

Upon receipt of this message, FN completes the RSA sig-
nature on h(m) by computing s = h(m)−dHNi · h(m)2dF Ni .
It then replaces the half signed message with s in the
Server-Key-Exchange message and forwards the informa-
tion to MD. MD checks that the public-key in the roaming
certificate is the one it has pre-installed. It generates its
own public and secret ephemeral DH key values, computes
the DH key from its own private DH value and the server’s
public DH value and generates the master key. MD then
sends the respective EAP-TLS message to FN including its
public DH value in the Client-Key-Exchange message.

HN verifies MD’s certificate and MD’s signature on
Client-Certificate-Verify. Note that HN has to gen-
erate the complete signature on the hash value included in
the Server-Key-Exchange message and use it to replace the
half signed hash sent previously before it can compute the
hash value of all messages sent and received so far. Other-
wise, the signature will not be correct as MD received the
complete signature (and not just the half signed message)
included in the Server-Key-Exchange message from FN.

If HN can verify MD’s signature, then HN sends the
EAP-TLS-KS-Success message to FN. The receipt of this
message assures FN of the correctness of MD’s identity.
FN now generates the DH key as well as the master key

Mobile Device FN Auth. Server HN Auth. Server

...

...

Generate DH key
Generate Master Secret

...

...

Server−Key−Exchange

Client−Certificate

Client−Key−Exchange
{Client DH public value}

Server−Done

Client−Hello

{RSA−public signature key,
FN−ID}

Server−Key−Exchange

Client−Certificate−Request

Client EAP−ID, FN−ID

Changed−Cipher−Specs

Finished

EAP−TLS−KS−Start

Server−Hello

Server−Certificate

Client−Certificate−Verify

EAP−TLS−KS−Success

m = Client.RAND || Server.RAND || Server−Public−DH
Compute

Verify sigature s

Compute RSA signature on h(m):

Validate MS certificate

Generate DH key

Generate Master Secret

PSfrag replacements

Compute h(m), h(m)dHNi

h(m)dHNi

s = h(m)dHNi h(m)
dFNi

h(m)dHNi h(m)
dFNi

{DMS(Hash(Client-Hello,...,Client-Key-Exchange))}

Verify DMD(Hash(...))

Figure 7: EAP-TLS-KS with DHE-RSA

and eventually completes the EAP-TLS-KS protocol as in
the original EAP-TLS protocol. As in the RSA encryption-
based case, MD is assured of the correctness of FN’s identity
by the correctness of the encryption of the Finished message
received from FN.

4.3.3 DHE-DSS Case
Figure 8 describes the changes in the EAP-TLS-KS pro-

tocol in the case a DSS signature verification key is used as
the public roaming key. HN and FN jointly sign the server’s
public DH key part using the distributed DSS signature de-
scribed previously. The protocol is almost identical to the
DHE-RSA case except that FN has to send the ephemeral
DSS key part αKF Ni to HN in the EAP-TLS-KS-Start mes-
sage. In both the DHE-based protocols any FNi can request
HN to partly sign DH ephemeral keys regardless of any MD
requesting to access FNi. However, this can be noticed by
HN if no Client-Certificate-Verify message follows the
Server-Key-Exchange message. Moreover, as the hash value
of the ephemeral DH key that is signed with the DSS or RSA
key includes the Server.RAND as well as the Client.RAND,
FN cannot use the recovered half signed DH ephemeral key
to fool MD.

4.3.4 Cost
We analyze the new protocol in comparison to two other

usage scenarios of EAP-TLS for inter-provider roaming. The
first one is to use the authentication server in HN and hav-
ing FN act like an access point in the regular EAP-TLS
protocol. This scenario is equivalent to the one depicted in
Figure 3 when replacing the client with MD, the server with
the authentication server in HN and placing the authentica-

Mobile Device

Client−Hello

FN Auth. Server HN Auth. Server

...

...

...

... ...

Compute DSS signature on h(m):

Server−Key−Exchange

Server−Key−Exchange
h(m) (r,s)

{DSS−public signature key, FN−ID}

EAP−TLS−KS−Start

Server−Certificate

Client EAP−ID, FN−ID

m = Client.RAND || Server.RAND || Server−Public−DH

Verify sigature s

PSfrag replacements

αKF Ni

Choose KkHNi
, RHN , R∗

HN randomly

Compute h(m), sHNi
(h(m))

αKHN , r, sHN , RHN , R∗

HN

Computes sFN , s = sHN + sFN

Figure 8: EAP-TLS-KS with DHE-DSS

Table 1: Comparison
EAP-TLS (FN) EAP-TLS (HN) EAP-TLS-KS

FN MD HN FN MD HN FN MD

EAP mes. 5 4 5 9 4 5 3 4

MD sig. ver. 1 1 1

Cert. val. 1 1 1 1 1 1∗

KS mes. 1 1

Key trans. 1

RSA-Based Key Generation

RSA dec. 1 1 1 1

RSA enc. 1 1 1

DHE-RSA-Based Key Generation

RSA sig. 1 1 1 1

RSA sig ver. 1 1 1

DHE-DSS-Based Key Generation

DSS sig. 1 1 1 1

DSS sig. ver. 1 1 1

tion server of FN in the middle to forward all traffic between
MD and HN’s AS. In the following we refer to this protocol
as EAP-TLS (HN). Note that this setting requires a secure
channel between FN and HN in order to transfer the master
key from HN to FN.

In the second scenario, the authentication is fully dele-
gated to FN, i.e., full control is delegated from HN to FN.
This is equivalent to Figure 3 when replacing the server with
FN’s authentication server. In the following we refer to this
scenario as EAP-TLS (FN).

Table 1 compares the three protocols EAP-TLS (HN),
EAP-TLS (FN) and EAP-TLS-KS in terms of the number
of EAP messages sent, signatures generated and verified and
the number of messages encrypted or decrypted by MD, HN
or FN. The three key generation types are listed separately.

The number of EAP messages MD has to send as well as
the number of public-key operations MD has to perform are
the same for all three protocols. Compared to the EAP-TLS
(FN) protocol, the new protocol has the advantage that MD
can authenticate FN without having to check the validity of
any chain of certificates and the revocation status of these
certificates. Instead, MD can use the pre-installed public
roaming certificate and simply check whether it matches the
received server certificate. If the certificate is revoked due
to compromise, HN must immediately notify MD. In case
the certificate expired, MD trusts HN not to engage in the
authentication. This addresses an important problem with
the other schemes where MD is required to check the validity
of FN’s certificate itself or delegate this task and wait for
the respective response.

In comparison to EAP-TLS (FN), the new protocol shifts
part of the load from FN to HN. In the new protocol,
FN has to forward three EAP messages between MD and
HN and has to send one additional EAP-TLS-KS mes-
sage to HN. The load of verifying MD’s signature on the
Certificate-Verify message and the load of validating
MD’s certificate is shifted to HN.

Compared to EAP-TLS (HN), the new protocol signifi-
cantly reduces the number of messages FN has to forward
between MD and HN. The new protocol requires the for-
warding of only three EAP messages as opposed to the nine
messages in EAP-TLS (HN). The new protocol, however,
requires two additional EAP-TLS-KS messages to be ex-
changed between HN and FN as well as an additional public-
key operation by FN. Unlike in EAP-TLS (HN), the new
protocol does not require any secure channel in order to
transfer the master key from HN to FN.

4.4 Properties of EAP-TLS-KS
Complete Control by HN: HN fully controls every ac-
cess requested by any of its subscribed MDs to any foreign
network. HN furthermore fully controls the revocation sta-
tus of both the roaming agreement with each FN as well as
that of any MD. It can thus ensure that no successful au-
thentication can take place after revocation. This eliminates
the trust HN has to put into FN in other protocols, namely
the trust, that FN correctly checks the revocation status of
MD’s certificate before granting access.

Proof of FN’s ID to MD and Authentication of MD

to FN: As HN uses a different key share for every FN, MD
gains an indirect proof of FN’s identity upon successful ter-
mination of the EAP-TLS-KS protocol. This proof of FN’s
identity enables MD to configure its own roaming policy
locally, e.g., by excluding certain networks or keeping pref-
erence lists. This furthermore allows for a simple integration
of an accounting initialization into the authentication pro-
cedure. Details will be discussed in Section 5.

Since authentication of roaming MDs requires HN to val-
idate the certificate status, FN is assured that upon suc-
cessful completion of the protocol HN approves MD to use
FN’s services and that HN is willing to reimburse FN for
providing service to MD.

Elimination of Secure Channel between HN and FN:

As opposed to many other schemes (e.g., [33, 45]), the new
authentication protocol does not require the existence of a
secure channel between HN and FN. This is due to the key
splitting which makes it unnecessary to transfer the master
key from HN to FN.

Simple Integration of New Roaming Agreements: A
new roaming agreement between HN and a new foreign net-
work FNl+1 requires the generation of a new pair of shares
of the secret roaming key. In the RSA cases, HN simply gen-
erates two new shares of the secret roaming key d, namely
dHNl+1 and dFN l+1 , distributes dFNl+1 to FNl+1. In the
DSS case, it generates a new pair of shares of the secret
roaming key a, namely (aHNl+1 , aFNl+1). It keeps both
shares to itself and distributes aFNl+1 to FNl+1. In both
cases neither does the provider have to change the roaming
key pair nor does it have to update or change any of the
already distributed shares. Our scheme thus accommodates
expansion to an arbitrary number of roaming agreements.
The security of the scheme does not depend on the number

of FNs the home provider has roaming agreements with.
No adjustments are necessary for MD in order to allow for
successful authentication to a new FN upon roaming.

Efficient Revocation of Agreements and Subscrip-

tions: In order to revoke the roaming agreement with FN,
HN simply marks the respective shares for that FN as re-
voked. Incoming authentication requests for the revoked FN
are then no longer co-signed or half decrypted by HN. There
is no need for HN to change the public roaming key.

The revocation status of the certificates for MDs is main-
tained by HN. Consequently, no FN is required to check
the status of MD. Instead, revocation of MD’s certificate is
efficiently implemented by HN refusing to co-sign or half-
decrypt authentication requests for revoked MDs.

Simple Handling of Compromised Keys: In case the
key of a particular FN has been compromised, HN marks the
corresponding shares as invalid. In particular, the compro-
mise of the key share of an individual FN does not require
the generating of a new roaming key pair. This is due to the
fact that all FNs have individual shares.

In case the secret roaming key itself is compromised, HN
has to immediately notify all its MDs of the revocation of
the current roaming certificate and distribute a new one.
However, it is not necessary for HN to provide the FNs with
new shares. Consequently, the burden of expensive secret
key share distribution in case of a compromised key is elim-
inated. In the following we discuss the details of handling
compromised keys for the different roaming key types:

RSA Cases: The secret roaming key is a secret RSA key d
and the public roaming key is a public RSA key pair (e, n).
Let d∗ be the new secret roaming key to be split with the
FNs and let (e∗, n∗) be the corresponding public RSA key
pair with n∗ 6= n.7 Then, HN determines δ = d − d∗

mod ϕ(n∗) as well as δi = d + wi − dFNi
mod ϕ(n∗) and

replaces its own old shares with the new shares

d
∗

HNi
= 2(wi − δ − δi) + d

∗ mod ϕ(n∗)

for i = 1, . . . , l. Consequently, any pair (d∗

HNi
, dFNi

) can
now be used to reconstruct the new roaming key d∗ by:

−d
∗

HNi
+ 2dFNi

= − 2(wi − δ − δi) − d
∗

+ 2(wi − δ + d
∗ − δi)

= d
∗ mod ϕ(n∗)

In fact, the splitting of the new key d∗ is done in the same
way as the splitting of d by replacing wi with wi − δ − δi.
That is, the random contribution of wi is now provided by
δi = d + wi − dFNi

mod ϕ(n∗). If an attacker knows d and
can thereby factor n, he can also learn wi by collaborating
with FNi. However, the attacker cannot compute δ or δi

as FNi does not know ϕ(n∗). Even if two or more FNs
collaborate, they cannot compute δ as each collaborating
FNi contributes an unknown variable δi.

DSS Case: Splitting of a new secret roaming key αx∗

= a∗

is obtained by determining a new additive splitting for x∗.
That is, HN chooses a new x∗ ∈ {1, . . . , q − 1} and deter-
mines δ = x − x∗ mod q − 1. It then computes

x
∗

HNi
= xHNi

+ δ mod q − 1

7
It is important to ensure that n∗ is different from n. Otherwise,

since an attacker who knows d can factor n and thereby knows ϕ(n)
could also easily compute d∗ by inverting e∗ modulo ϕ(n) in case
n∗ = n

and determines a∗ = αx∗

as the new secret key and a∗

HNi
=

α
x∗

HNi . Consequently, a∗

HNi
· aFNi

= α
−x∗

HNi
+2xF Ni =

αx−δ = αx∗

. Thus, HN and FNi now multiplicatively share
the new secret key a∗.

It is important to note, that from a, aHNi
, and aFNi

the
values x, xHNi

, and xFNi
cannot be recovered as long as the

discrete logarithm assumption holds. Thus, if the key a is re-
covered by an attacker, x, xHNi

, and xFNI
are not affected.

Consequently, the attacker can learn nothing about a∗.
An attacker who recovers a cannot use his knowledge on

past signatures to compute new ones. As he knows noth-
ing about the key a∗, he is in exactly the same situation
as any signer with a secret key that tries to forge signa-
tures of another signer using the same public parameters.
If the attacker could use his knowledge on past signatures
to compute valid signatures without knowledge of a∗, each
signer could use his own past signatures to sign on behalf of
someone else in DSS. The new splitting therefore is as se-
cure against signature forgery as the original DSS signature
scheme.

Simple Update of Keys: Updating of keys can be done
in the same way as in the case of compromise.

5. ACCOUNTING
EAP-TLS-KS can be combined with any accounting

method that WISP may decide to use, in particular those
methods already in use. One of the shortcomings of cur-
rently used accounting methods is that they are restricted
to per day or per session billing. In order to provide al-
ternate subscription models, along with incontestable and
more fine-grained billing, future systems will need to inte-
grate more advanced accounting methods such as micropay-
ment schemes. However, micropayment schemes designed
to pay for streaming data services generally suffer from a
relatively expensive initialization phase in order to achieve
efficient payment [39]. This is different in the context of
EAP-TLS-KS as the expenses of the initialization phase can
be efficiently offset by means of the authentication protocol
itself.

In the following we present a method to integrate the ini-
tialization phase of a slightly modified, more secure, version
of the micropayment system introduced in [14] into EAP-
TLS-KS. The integration of the micropayment scheme re-
quires a single additional message in the EAP-TLS-KS pro-
tocol as the authentication and tariff commitment messages
of the original protocol can elegantly be replaced with as-
surances from the EAP-TLS-KS protocol.

5.1 Buttyán and Hubaux’s Protocol
The protocol presented in [14] is based around the idea of

a customer care agency issuing a ticket to the user. The user
then presents the ticket to a service provider to prove that
the customer care agency will pay for the services provided.

The message flow of the accounting scheme is illustrated in
Figure 9. The first stage in the accounting scheme is ticket
acquisition. The user sends a ticket request including his
identity Uid and a random number r0 to the customer care
agency. The agency A creates a ticket

T = (Aid, sn, cn, publicDHu, Ku
| {z }

=:z

, K
−1
a (z))

with serial number sn, a value cn, a public DH value for the

User
Service

Provider (SP)
Customer Care

Agency

ModifiedReplaced

Decrypt & check signature

Compute session key k

SP authentication & tariff:

Check hash value

Acquire service provider’s
ID and public DH value
(method unspecified)

Compute session key v from

provider’s public DH value

T
ic

ke
t A

cq
ui

si
tio

n
In

iti
al

iz
at

io
n:

 (
A

ut
h.

 a
nd

 T
ar

if
f

A
gr

ee
m

en
t)

Se
rv

ic
e

Pr
ov

is
io

n

Request for d tickets

User authentication & commitment:

PSfrag replacements

Ticket request: (Uid, r0)

EKua(T, c0, secretDHu, K−1
u , r0)

secretDHu and service

Service request: (T, r1)

(t, h(k, t, r1), r2)

D
K

−1
u

(sn, t, r2)

Compute cl−d = gl−d(c0)

where cl was last tick sent

Payment: cl−d

Check g(d)(cl−d) = cl

T = (sn, cn, < keys >, Aid, D
K

−1
a

(sn, cn, < keys >))

< keys >= {publicDHu, Ku}

Figure 9: Buttyán and Hubaux Protocol

user and a public key Ku.8 In addition, these parameters
are signed with the agency’s signature key K−1

a . The agency
then sends T together with the corresponding secret DH
value secretDHu, the secret key K−1

u , and c0 to the user.
The message is encrypted under a key Kua shared by the
agency and the user.

The second stage is ticket usage. The user acquires the
service provider’s identity and public DH key exchange pa-
rameter in a way not further specified in [14]. It uses the
provider’s public DH value and its private one to compute
a session key k. The user then sends a service request to
the service provider containing T . The service provider can
now compute k using the public DH value in T and its pri-
vate DH value. The next message authenticates the service
provider to the user and informs the user of the tariff t.
The user’s response authenticates the user and provides the
user’s commitment to the ticket and tariff which the service
provider stores for use in billing.

Payment is based on a publicly known one-way hash func-
tion g and a chain of hash values starting with c0 and ending
with cn = g(n)(c0). At any point during service provisioning,
the user has supplied the service provider with n− l ticks by
revealing cl. If the service provider requests another b ticks
the user sends cl−b = g(l−b)(c0) to the service provider. The

service provider can then check whether cl
?
= g(b)(cl−b).

Billing takes place offline. The service provider simply
presents the customer care agency with the ticket’s serial
number, the user’s commitment, and the latest value of the
hash chain it received from the user.

5.1.1 Malicious Service Provider Attack
Buttyán and Hubaux’s scheme is vulnerable to the follow-

ing attack. As anyone can observe a user’s commitment to

8
To maintain readability, we stick to the notation used in [14] at the

cost of conflicts with the notation used in previous sections.

Client FN Server HN Server

...

...

...

...
FN.RAND

Client−Hello

Server−Certificate

Ticket Commitment

PSfrag replacements

EMD(Ticket,params)

{T, DMD(sn, FN.RAND, FN−ID)}

Figure 10: EAP-TLS-KS with Micropayment Ini-

tialization

the serial number sn of a ticket and the ticks cl, an eaves-
dropper could present these to the customer care agency and
request payment. In [14], the service provider signs its re-
quests to be reimbursed before it sends them to the customer
care agency in the clearance phase. This makes it impos-
sible for anyone except authorized service providers, whose
signature the customer care agency can verify, to get paid.
However, a malicious service provider could collect ticket
commitments and the corresponding ticks cl which the user
issues while using another service provider’s service and then
present these to the customer care agency. The malicious
service provider could then be paid for a service it did not
provide. Moreover, the customer care agency would claim
that the user tried to use the same ticket on two different
service providers and would accuse the user of fraud.

We suggest to protect against this attack by adding the
service provider’s identity into the user’s commitment such
that only this service provider can present the commitment
to the customer care agency [1].

5.2 Modifications for Use with EAP-TLS-KS
The entities in the micropayment scheme are mapped

to the following entities in the roaming scenario: the user
is mapped to the mobile device, the role of the customer
care agency is provided by the home network, and the
service provider is the foreign network. Accordingly, Fig-
ure 10 describes the modifications necessary to the EAP-
TLS-KS protocol in order to include micropayment ini-
tialization. Since HN receives the identity of MD in the
EAP-Request-Identity message and the random number
Client.RAND in the Client-Hello message, there is no need
for an explicit ticket request in the modified protocol. As
EAP-TLS-KS provides mutual authentication, one can re-
move the two public keys from the ticket in the original mi-
cropayment scheme. However, in order to prevent an eaves-
dropper from replaying a ticket to a different FN, the ticket
must include the client’s identity MD-ID. Thus, the com-
plete structure of the ticket is:

T = (sn, cn, MD-ID, D
K

−1
HN

(sn, cn, MD-ID))

where sn is the ticket’s serial number, cn is the final value
of the one-way hash chain and K−1

HN is the corresponding
private part of the server-certificate sent from HN to MD.
This signature allows MD to verify the origin of the ticket.

The two secret keys corresponding to the eliminated pub-
lic keys can be removed from HN’s response. Consequently,
HN sends EKMD

(T, c0, Client.RAND) to MD which is en-
crypted with the public key KMD corresponding to a de-

cryption key held by the MD.9 The corresponding message
is appended to the Server-Certificate message in EAP-TLS-
KS. As this message is forwarded through FN’s server, FN
appends a newly generated random number FN.RAND.10

FN.RAND corresponds to the random number r2 in the
original protocol, and its inclusion in the commitment by
the MD serves the same purpose; to guarantee the freshness
of the commitment to FN.

The original protocol works under the assumption that
the tariff could be different each time the user connects to
a service provider, and that the user would have to agree
to this tariff in its commitment. We assume that the tar-
iff will be negotiated by the WISPs ahead of time as part
of their roaming agreements. Therefore, we can eliminate
the part of the protocol used to inform MD of the tariff.
Also, the authentication during this part of the protocol is
replaced by the authentication in EAP-TLS-KS. Once the
EAP-Success messages are exchanged, i.e., MD and FN have
authenticated each other, MD commits to the use of ticket
T as payment to FN. It does so by sending FN the ticket
and its signature of the serial number, the random number
FN.RAND as well as the FN’s identity:

{T, DMD(sn, FN.RAND, FN-ID)}

This commitment is the only additional message the initial-
ization of the accounting scheme requires if integrated in
EAP-TLS-KS. In a final step, FN verifies the signature and
stores the message for the clearance process.

Service provisioning, clearance and billing works as in
the original scheme, except that HN checks FN’s signature
against the identity included in the ticket commitment.
Security Analysis: Fabricating or modifying tickets by
either an outside attacker or a valid MD is prevented by HN
signing the data in the ticket. Similarly, MD’s signature on
the commitment along with the signed client identity in the
ticket prevent an eavesdropper from using an intercepted
ticket.

Reuse of a previously used ticket by MD will be de-
tected (at the latest) in the clearance and billing stage.
HN can prove that MD cheated from the existence of two
commitments with the same serial number but differing
FN.RAND’s. If MD attempts to use the same ticket more
than once with the same FN, then FN will be able to de-
tect the fraud since it is required to retain copies of previous
commitments for billing purposes. If MD attempts to use
the same ticket with two different FNs, then this fraud is
not detected until billing takes place. However, since MD
is guaranteed to be caught, it is a matter of imposing a
large enough penalty to offset any potential gain and thus
discourage MD from reusing tickets.

By including FN’s identity in MD’s ticket commitment,
no one but FN can redeem the ticket commitment in combi-
nation with any tick by presenting the information to HN.

Should FN decide to suddenly stop providing service, it
will gain very little as MD will not release any more ticks.
Due to the use of a one-way hash function it is impossible
for FN to forge ticks. Likewise, if the user stops sending

9
It is important to note that in the original EAP-TLS-KS protocol,

MD is not required to hold a decryption key. Therefore, MD must be
issued a decryption key in order to allow for the use of the micropay-
ment extension.

10
FN.RAND must be excluded from the signed message hash sent by

MD to HN since HN has no knowledge of it (nor does it need any).

ticks, FN may simply stop providing service. Consequently,
it may lose at most one pay period (or whatever tolerance
is set as acceptable).

6. RELATED WORK

6.1 Inter-Provider Roaming in Public
WLANs

Overviews: In [9] Balachandran et al. discuss open ques-
tions and challenges related to WLAN hotspot providers
with an emphasis on roaming issues and security. In [46]
Wang et al. discuss and analyze the security mechanisms
UAM, 802.1X, PANA and USIM-based authentication for
wireless hotspot providers and inter-provider roaming.

Web-Based Authentication Methods: The most
widely-used authentication protocol by WISPs is the web-
based universal access method UAM. This method has been
shown to have several vulnerabilities [46]. A renegade access
point connected to a web server with a valid SSL certificate
can be set up in the hotspot and trick users into divulging
their authentication credentials. Furthermore, UAM is vul-
nerable to dictionary attacks. Also, a malicious MD can
spoof the address pair (MAC/IP address) of an already
authenticated MD to conduct service theft. Another web-
based authentication method is CHOICE [8] which is secure
against address spoofing. However, it uses the MS-Passport
technology [36], which makes it platform dependent. A pro-
prietary security sublayer between the link layer and the
IP layer further restricts the application area of CHOICE.
In contrast, the protocol proposed in this paper is based
on publicly-available technologies only. Spinach [6] offers
a web-based interface to a Kerberos authentication service
and aims to not only protect public wireless access points
but also to secure public network ports. It is designed to
be flexible with respect to the use of other authentication
methods if desired. Unfortunately it is vulnerable to address
spoofing.

Other Proposals: Salgarelli et al. [45] suggest an authen-
tication protocol EAP-W-SKE that minimizes the number
of round-trip message exchanges between FN and HN to
one round-trip. However, this requires a secure channel be-
tween HN and FN for key transfer. In [33] Matsunaga et
al. propose a single sign-on authentication architecture that
is based on 802.1X and EAP-TLS for PKI-based network
authentication. It can be combined with any web-based au-
thentication method for MD authentication. Due to the use
of 802.1X, their architecture is secure against address spoof-
ing. Yet, the web-based user authentication mechanisms
require a secure channel between the local web server and
the user’s identity server of choice. Our protocol does not re-
quire the existence of any secure channel between any of the
components of the visited FN and HN. Moreover, in [33] it is
assumed that MDs can check the validity of any public-key
certificate presented by FN as part of the EAP-TLS proto-
col. The problems that arise from certificate chain discovery
and validation by MD are not addressed in [33].

Some protocols have been suggested for inter-provider
roaming that use public-key-based methods to authenticate
both the network and MD. Gu et al. made an explicit sug-
gestion for WLAN [21] whereas Bayarou et al., for example,
suggest a framework for wireless networks in general [10].
The authentication protocol in [21] shares the aforemen-

tioned deficiencies concerning costly discovery, verification
and validation of certificate chains by an offline MD. In [10]
these shortcomings are addressed by delegating certificate
chain discovery and validation to a trusted server. This
solves the offline problem, but causes additional round-trips
to the trusted server.

6.2 Distributed Signatures
Secret Sharing Scheme: For the construction of a secret
sharing scheme that represents our non-threshold composite
access structure we make use of an approach presented and
proved in [32]. The authors show that a composite access
structure Γ0[(t1, n1), (t2, n2), ..., (tl, nl)] allows for a vector
space construction if the initial access structure Γ0 itself
allows a vector space construction. The proof is constructive
and we use it in a straight-forward manner to construct our
linear secret sharing scheme.

Geer and Yung suggest alternative applications of thresh-
old cryptography in [19]. Although this work does not ad-
dress inter-provider roaming, this paper inspired our work.

Distributed RSA: Distributed RSA decryption and signa-
tures were first suggested and analyzed in [13] and [17]. We
use these methods in EAP-TLS-KS in a straight-forward
manner. In [12], Boneh et al. use a semi-trusted media-
tor in conjunction with two-party RSA signature schemes
and cryptosystems to facilitate user certificate revocation.
In this paper, we refer to their security analysis for the
distributed RSA decryption. In [30], MacKenzie et al.
use distributed RSA signatures to secure PIN-protected or
password-protected private keys against off-line dictionary
attacks in order to achieve capture resilience. We refer to
their formal security analysis for the distributed RSA signa-
ture scheme.

Distributed DSS: Distributed DSS signatures are partic-
ularly hard to construct since not only a long term secret
key, but also the ephemeral key has to be split between
signers. A fully symmetrical two-party DSS signature gen-
eration scheme was presented by MacKenzie et al. in [31].
This scheme requires a semantically secure public-key en-
cryption scheme to be implemented between the two signers
that exhibits a specific homomorphic property as, e.g., in
the cryptosystems of Pallier [38] or Okamoto et al. [37]. The
purpose of the encryption scheme is, to allow one party to
reveal his share encrypted with its public key to the other
party. The other party can use the encrypted share to gen-
erate an encrypted signature and then send this back to
the first party, who finally decrypts the full signature. The
encryption scheme thus enables the symmetry of the two-
party signature. We assume an asymmetric setting in which
HN keeps the complete key as well as FN’s shares for sev-
eral reasons. First, it allows HN to engage in new roaming
agreements. Second, it enables simple key update and key
compromise handling. Finally, it allows HN to use the full
secret key if MD “roams” to HN. The use of MacKenzie
et al.’s distributed DSS version in our setting would thus
generate unnecessary overhead. In contrast, the distributed
DSS signature scheme introduced in this paper is tailored
to the specific setting of roaming in which one of the sign-
ing parties has complete power over the other. In the first
work on distributed DSS signatures [28], Langford presented
a (2, l) threshold DSS signature for l ≥ 3. This construc-
tion was generalized by Gennaro et al. to a (t, n) thresh-
old signature with n ≥ 2t + 1 in [20]. These schemes are

not directly applicable in our scenario as we require a (2, 2)
signature scheme. However, our distributed version is sim-
ilar to the (2, 3) threshold DSS signature presented in [28].
Langford blinds the shares of each party with random num-
bers and uses a third party to unblind and finally compose
partly signed messages into fully signed ones. We use a sim-
ilar blinding with random numbers to conceal HN’s share
from FN.

6.3 Micropayment Schemes
Micropayment schemes are payment schemes designed to

enable payments of small amounts. Application areas of
such schemes include payments for web content like single
visits to web pages and payments for streaming data such
as music or video streams on a per minute basis. Overviews
of micropayment schemes and electronic payment schemes
in general can be found in [29] and [7].

Fine-grained billing for inter-provider roaming is one of
the application areas for a special type of micropayment
schemes, that are designed for subsequent small payments
to the same vendor.

Schemes optimized for this purpose use subsequent val-
ues from a one-way hash chain rather than digital signa-
tures on payments, in order to reduce the load imposed on
the “bank” verifying subsequent payments. Using one-way
hash chains in micropayment schemes for efficiency reasons
was independently suggested by Anderson et al.[4], Pedersen
[39], and Rivest and Shamir [43]. In [43] Rivest and Shamir
present two systems PayWord and MicroMint. MicroMint
eliminates public-key operations at the risk of forgery. This
restricts the use of MicroMint to uncorrelated small pay-
ments. PayWord, [43] uses a hash chain where the root is
digitally signed by the user. It is a credit system and as such
has the disadvantage that a client can cause damage to the
bank by purchasing in excess [3]. Anderson et al.’s NetCard
[4] bypasses this problem by using the bank’s signature on
the root of each chain the user generates, thus requiring the
bank to be online at the first use of each chain. Buttyán
et al. use a similar setting, yet shift the chain generation
as well as the signing of the root of the hash chain to the
bank. This allows for the bank to be off-line. Additionally,
Buttyán et al. integrate authentication and tariff negotia-
tion directly into their accounting scheme.

All of the previously mentioned schemes introduce effi-
cient service provisioning at the cost of expensive initial-
ization. Horn and Preneel first demonstrate how a such a
micropayment scheme could be integrated into an authenti-
cation protocol [23] to minimize the expense of the initializa-
tion phase. We use this idea to efficiently integrate Buttyán
et al.’s scheme in EAP-TLS-KS. Their scheme is particu-
larly suitable for our application for two reasons: First, the
authentication assurances in the original protocol can easily
be extracted and replaced with the EAP-TLS-KS assurances
without affecting the security the actual payment system.
Second, the off-line ticket acquisition of the original proto-
col can be integrated into our protocol without causing any
additional messages.

Another approach to bypass the over-spending problem
without requiring the bank to be online is to randomize the
audit time point [18, 27]. In EAP-TLS-KS the home net-
work has to be online during authentication. Consequently,
a randomization of the audit would not provide any advan-
tage in EAP-TLS-KS.

Another trend in the development of micropayment
schemes is to randomize the payments in order to reduce
the load on the bank and the vendor in case of single small
payments. This idea goes back to [41] and was further de-
veloped in [29]. A recent suggestion in this direction is the
Peppercoin micropayment scheme of [35] as well as its vari-
ations [42] and application [26]. In our scenario a user will
typically use a WISP for longer than a few seconds. Thus
we do not need a protocol that is optimized for only a single
small payment.

7. OUTLOOK
Our protocol does not yet explicitly support anonymous

roaming nor does it support quality-of-service dependent
payment. Future work will explore how current research
on these topics such as the ideas in [44] can be integrated
into our protocol. Generalizing the key splitting approach to
support roaming mediators in addition to pairwise roaming
agreements is another direction for future work.

8. REFERENCES
[1] Personal Communication with L. Buttyán, May 2005.

[2] B. Aboba and D. Simon. PPP EAP TLS Authentication
protocol. RFC 2716, October 1999.

[3] N. Adachi, S. Aoki, and Y. Komano. The security problems of
Rivest and Shamir’s PayWord scheme. In Proceedings of IEEE

CEC’03, 2003.

[4] R. J. Anderson, C. Manifavas, and C. Sutherland. NetCard - A
practical electronic-cash system. In Security Protocols, volume
1180 of LNCS, 1997.

[5] B. Anton, B. Bullock, and J. Short. Best current practice for
wireless internet service provider (WISP) roaming. Wi-Fi
Alliance - Wireless ISP Roaming (WISPr), February 2003.

[6] G. Appenzeller, M. Roussopoulus, and M. Baker. User-friendly
access control for public network ports. In Proceedings of
IEEE INFOCOM’99, 1999.

[7] N. Asokan, P. Janson, M. Steiner, and M. Waidner. State of
the art in electronic payment systems. IEEE Computers, (30),
September 1999.

[8] P. Bahl, A. Balachandran, and S. Venkatachary. Secure
wireless internet access in public places. In Proceedings of
IEEE ICC’01, 2001.

[9] A. Balachandran and G. M. Voelker. Wireless hotspots:
Current challenges and future directions. In Proceedings of

ACM WMASH’03, 2003.

[10] K. Bayarou, M. Enzmann, E. Giessler, M. Haisch, B. Hunter,
M. Ilyas, S. Rohr, and M. Schneider. Towards certificate-based
authentication for future mobile communications. Wireless

Personal Communications, 29, June 2004.

[11] L. Blunk and J. Vollbrecht. PPP Extensible Authentication
Protocol (EAP). RFC 2284, March 1998.

[12] D. Boneh, X. Ding, and G. Tsudik. Fine-grained control of
security capabilities. ACM Transactions of Internet

Technology, 4(1), February 2003.

[13] C. Boyd. Digitial multisignatures. In Conference on

Cryptography and Coding, 1986.

[14] L. Buttyan and J.-P. Hubaux. Accountable anonymous access
to services in mobile communication systems. In Symposium
on Reliable Distributed Systems, 1999.

[15] T. Clancy and W. Arbaugh. EAP Password Authenticated
Exchange (EAP-PAX). Internet Society
draft-clancy-eap-pax-03, April 2005.

[16] T. Dierks and C. Allen. The TLS protocol version 1.0. RFC
2246, January 1999.

[17] Y. Frankel. A practical protocol for large group oriented
networks. In Advances in Cryptology - EUROCRYPT’89,
LNCS, 1989.

[18] E. Gabber and A. Silberschatz. Agora: A minimal distributed
protocol for electronic commerce. In Proceedings of the
USENIX Workshop on Electronic Commerce, 1996.

[19] D. Geer and M. Yung. Split-and-delegate: Threshold
cryptography for the masses. In Proceedings of FC’02, volume
2357 of LNCS, 2002.

[20] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust
threshold DSS signatures. In Advances in Cryptology -
EUROCRYPT’96, volume 1070 of LNCS, 1996.

[21] J. Gu, S. Park, O. Song, L. J., J. Nah, and S. Sohn. Mobile
PKI: A PKI-based authentication framework for the next
generation mobile communications. In Proceedings of
ACISP’03, volume 2727 of LNCS, 2003.

[22] H. Haverinen and J. Salowey. Extensible Authentication
Protocol method for GSM Subscriber Identity Modules
(EAP-SIM). Internet Society,
draft-haverinen-pppext-eap-sim-16.txt, December 2004.

[23] G. Horn and B. Preneel. Authentication and payment in future
mobile systems. In Proceedings of ESORICS’98, volume 1485
of LNCS, 1998.

[24] IEEE. IEEE 802.1X - Port-based network access control, June
2001.

[25] IEEE. IEEE 802.11i - Specification for enhanced security, July
2004.

[26] M. Jakobsson, J.-P. Hubaux, and L. Buttyán. A
micro-payment scheme encouraging collaboration in multi-hop
cellular networks. In Proceedings of FC’03, volume 2742 of
LNCS, 2003.

[27] S. Jarecki and A. Odlyzko. An efficient micropayment system
based on probabilistic polling. In Proceedings of FC’97,
volume 1318 of LNCS, 1997.

[28] S. K. Langford. Threshold DSS signatures without a trusted
party. In Advances in Cryptology - CRYPTO’95, volume 963
of LNCS, 1995.

[29] R. J. Lipton and R. Ostrovsky. Micropayments via efficient
coin-flipping. In Proceedings of FC’98, volume 1465 of LNCS,
1998.

[30] P. MacKenzie and M. K. Reiter. Networked cryptographic
devices resilient to capture. In Proceedings of IEEE
Symposium on Security and Privacy, 2001.

[31] P. MacKenzie and M. K. Reiter. Two-party generation of DSA
signatures. In Advances in Cryptology - CRYPTO’01, volume
2139 of LNCS, 2001.

[32] E. Martinez-Moro, J. Mozo-Fernandez, and C. Munuera.
Compounding secret sharing schemes. Australian Journal of
Combinatorics, 30, September 2004.

[33] Y. Matsunaga, A. S. Merino, T. Suzuki, and R. H. Katz.
Secure authentication system for public WLAN roaming. In
Proceedings of ACM WMASH’03, September 2003.

[34] A. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[35] S. Micali and R. Rivest. Micropayments revisited. In
Proceedings of CT-RSA’02, 2002.

[36] Microsoft passport network. http://www.passport.com.

[37] T. Okamoto and S. Uchiyama. A new public-key cryptosystem,
as secure as factoring. In Advances in Cryptology -
EUROCRYPT’98, volume 1403 of LNCS, 1998.

[38] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In Advances in Cryptology,

EUROCRYPT’99, volume 1592 of LNCS, 1999.

[39] T. P. Pedersen. Electronic payments of small amounts. In
Security Protocols, volume 1180 of LNCS, 1996.

[40] C. Rigney, S. Willens, A. Rubens, and W. Simpson. Remote
Authentication Dial in User Services (RADIUS). RFC 2865,
June 2000.

[41] R. L. Rivest. Electronic lottery tickets as micropayments. In
Proceedings of FC’97, volume 1318 of LNCS, 1997.

[42] R. L. Rivest. Peppercoin micropayments. In Proceedings of

FC’04, volume 3110 of LNCS, 2004.

[43] R. L. Rivest and A. Shamir. PayWord and MicroMint: Two
simple micropayment schemes. In Security Protocols, volume
1180 of LNCS, 1996.

[44] N. B. Salem, J. P. Hubaux, and M. Jakobsson.
Reputation-based Wi-Fi deployment protocols and security
analysis. In Proceedings of ACM WMASH’04, 2004.

[45] L. Salgarelli, M. Buddhikot, J. Garay, S. Patel, and S. Miller.
Efficient authentication and key distribution in wireless IP
networks. IEEE Wireless Communications Magazine, 2003.

[46] H. Wang, R. Prasad, A. P. Schoo, M. Bayarou, K. and
S. Rohr. Security mechanisms and security analysis: Hotspot
WLANs and inter-operator roaming. In Proceedings of ACM

WMASH’04, 2004.

